توفر منصة خدمة البث مثل YouTube وظيفة مناقشة للجماهير في جميع أنحاء العالم لمشاركة التعليقات. YouTubers الذين يقومون بتحميل مقاطع الفيديو على منصة YouTube ترغب في تتبع أداء مقاطع الفيديو التي تم تحميلها. ومع ذلك، فإن مهام التحليل الحالية من YouTube توفر فقط بعض مؤشرات الأداء مثل متوسط مدة العرض، سجل التصفح، والتباين في التركيبة السكانية للجمهور، وما إلى ذلك، ونقص تحليل المعنويات بشأن تعليقات الجمهور. لذلك، تقترح الورقة مؤشرات المعنويات متعددة الأبعاد مثل تفضيلات YouTuber وتفضيلات الفيديو ومستوى الإثارة لالتقاط مشاعر شاملة بشأن تعليقات الجمهور لمقاطع الفيديو ويوتيوغتر. لتقييم أداء الطبقات المختلفة، نقوم بتجربة معصوص قائما على التعلم والتعلم ومقرها في التعلم، ويكتشف تلقائيا ثلاثة مؤشرات معنويات لتصريحات الجمهور. تشير النتائج التجريبية إلى أن المصنف المستند إلى BERT يعد نموذج تصنيف أفضل من الطبقات الأخرى وفقا لنتيجة F1، ومؤشر المعنويات على مستوى الإثارة هو تحسن تماما. لذلك، يمكن حل مهام الكشف عن المعنويات المتعددة على منصة خدمة تدفق الفيديو من خلال مؤشرات المعنويات متعددة الأبعاد المقترحة مصحوبة مع مصنف Bert للحصول على أفضل نتيجة.
The streaming service platform such as YouTube provides a discussion function for audiences worldwide to share comments. YouTubers who upload videos to the YouTube platform want to track the performance of these uploaded videos. However, the present analysis functions of YouTube only provide a few performance indicators such as average view duration, browsing history, variance in audience's demographics, etc., and lack of sentiment analysis on the audience's comments. Therefore, the paper proposes multi-dimensional sentiment indicators such as YouTuber preference, Video preferences, and Excitement level to capture comprehensive sentiment on audience comments for videos and YouTubers. To evaluate the performance of different classifiers, we experiment with deep learning-based, machine learning-based, and BERT-based classifiers to automatically detect three sentiment indicators of an audience's comments. Experimental results indicate that the BERT-based classifier is a better classification model than other classifiers according to F1-score, and the sentiment indicator of Excitement level is quite an improvement. Therefore, the multiple sentiment detection tasks on the video streaming service platform can be solved by the proposed multi-dimensional sentiment indicators accompanied with BERT classifier to gain the best result.
المراجع المستخدمة
https://aclanthology.org/
يهدف تصنيف المعنويات على مستوى الجانب (ALSC) إلى تحديد قطبية المعنويات من جانب محدد في جملة. ESSC عبارة عن إعداد عملي في تحليل المعنويات المستندة إلى جانب الجسيم بسبب عدم وجود مصطلح الرأي اللازم، لكنه فشل في تفسير سبب اشتقاق قطبية المعنويات للجانب. ل
تقدم هذه الورقة المهمة المشتركة 2021 على تحليل المشاعر الأبعاد للنصوص التعليمية التي تسعى إلى تحديد درجة المعنويات ذات القيمة الحقيقية لتعليقات التقييم الذاتي كتبها الطلاب الصينيين في كل من التكافؤ والأبعاد الإثراية.يمثل Valence درجة المشاعر اللطيفة
حقق نهج تكبير البيانات والضيقات الخصم مؤخرا نتائج واعدة في حل المشكلة المفرطة في العديد من مهام معالجة اللغة الطبيعية (NLP) بما في ذلك تصنيف المعنويات. ومع ذلك، فإن الدراسات الحالية التي تهدف إلى تحسين قدرة التعميم من خلال زيادة البيانات التدريبية مع
يعمل العمل الحديث على تصنيف المعنويات على مستوى جانب الجساب شبكات اتصالا بيانيا (GCN) على أشجار التبعية لتعلم التفاعلات بين شروط الارتفاع وكلمات الرأي. في بعض الحالات، لا يمكن الوصول إلى كلمات الرأي المقابلة لمصطلح الجانب داخل القفزتين على أشجار التب
أظهر العمل الأخير على تصنيف المعنويات على مستوى جانب جانب الجسبي فعالية دمج الهياكل النحوية مثل أشجار الاعتمادية مع شبكات عصبية رسم بيانية (GNN)، ولكن هذه الأساليب عادة ما تكون عرضة للخطأ في التحليل. لتحسين الاستفادة من المعلومات الأساسية في مواجهة ا