ترغب بنشر مسار تعليمي؟ اضغط هنا

الرسم البياني فرقة التعلم على أشجار الاعتماد المتعددة لتصنيف المعنويات على مستوى الجانب

Graph Ensemble Learning over Multiple Dependency Trees for Aspect-level Sentiment Classification

499   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أظهر العمل الأخير على تصنيف المعنويات على مستوى جانب جانب الجسبي فعالية دمج الهياكل النحوية مثل أشجار الاعتمادية مع شبكات عصبية رسم بيانية (GNN)، ولكن هذه الأساليب عادة ما تكون عرضة للخطأ في التحليل. لتحسين الاستفادة من المعلومات الأساسية في مواجهة الأخطاء التي لا مفر منها، نقترح تقنية رسم بياني بسيطة ولكنها فعالة، Grapmerge، للاستفادة من التنبؤات من المحللين المختلفين. بدلا من تعيين مجموعة واحدة من المعلمات النموذجية إلى كل شجرة التبعية، نقدم أولا علاقات التبعية من يوزعات مختلفة قبل تطبيق GNNS على الرسم البياني الناتج. يسمح هذا نماذج GNN قوية بتحليل الأخطاء دون أي تكلفة حسابية إضافية، ويساعد على تجنب التغلب على التغلب والتجول من تكديس طبقة GNN عن طريق إدخال المزيد من التوصيلية في الرسم البياني للفرقة. تظهر تجاربنا في مهمة Semeval 2014 Task 4 و ACL 14 Twitter أن نموذج Graphmerge الخاص بنا ليس فقط تفوق النماذج مع شجرة الاعتماد الفردي، ولكن أيضا يدق نماذج فرقة أخرى دون إضافة معلمات النموذج.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يعمل العمل الحديث على تصنيف المعنويات على مستوى جانب الجساب شبكات اتصالا بيانيا (GCN) على أشجار التبعية لتعلم التفاعلات بين شروط الارتفاع وكلمات الرأي. في بعض الحالات، لا يمكن الوصول إلى كلمات الرأي المقابلة لمصطلح الجانب داخل القفزتين على أشجار التب عية، والتي تتطلب المزيد من طبقات GCN إلى النموذج. ومع ذلك، غالبا ما تحقق GCNS أفضل أداء بطبقتين، ولا تحقق GCNs أعمق أي مكسب إضافي. لذلك، نقوم بتصميم نماذج GCN الانتباه الانتقائية الجديدة. من ناحية، يتيح النموذج المقترح التفاعل المباشر بين شروط الجانب وكلمات السياق عن طريق عملية الانتباه الذاتي دون تحديد المسافة على أشجار التبعية. من ناحية أخرى، تم تصميم إجراء اختيار Top-K لتحديد كلمات الرأي عن طريق تحديد كلمات سياق K مع أعلى درجات الاهتمام. نقوم بإجراء تجارب على عدة مجموعات بيانات معيار شائعة الاستخدام وتظهرت النتائج أن SA-GL-GCN المقترح تفوق نماذج أساسية قوية.
يهدف تصنيف المعنويات على مستوى الجانب (ALSC) إلى تحديد قطبية المعنويات من جانب محدد في جملة. ESSC عبارة عن إعداد عملي في تحليل المعنويات المستندة إلى جانب الجسيم بسبب عدم وجود مصطلح الرأي اللازم، لكنه فشل في تفسير سبب اشتقاق قطبية المعنويات للجانب. ل معالجة هذه المشكلة، تعمل الأعمال الحديثة من تشفير المحولات التي تم تدريبها مسبقا على ELSC لاستخراج شجرة التبعية التي تركز على جانب جانب الجوانب التي يمكن أن تحدد كلمات الرأي. ومع ذلك، فإن كلمات الرأي المستحثة توفر فقط جديلة بديهية أقل بكثير من الترجمة الترجمة الشاملة على مستوى الإنسان. بالإضافة إلى ذلك، يميل التشفير المدرب مسبقا إلى استيعاب المشاعر الجوهرية في الجانب، مما تسبب في تحيز المعنويات وبالتالي يؤثر على أداء النموذج. في هذه الورقة، نقترح إطارا لتعليم تمثيل جانبي لمكافحة التحيز. يزيل أولا تحيز المعنويات في الجانب التضمين من خلال التعلم الخصم ضد المعنويات السابقة للجوانب. بعد ذلك، تقوم بمحاطة مرشحي الرأي المقطرين بالجانب من خلال نمذجة التبعية المستندة إلى SPAN لتسليط الضوء على شروط الرأي القابلة للتفسير. إن طريقتنا تحقق أداء جديد لحساب الفن في خمسة معايير، مع إمكانية استخراج الرأي غير المزعوم.
تصنيف النص القصير هو مهمة أساسية في معالجة اللغة الطبيعية.من الصعب بسبب عدم وجود معلومات السياق والبيانات المسمى في الممارسة العملية.في هذه الورقة، نقترح طريقة جديدة تسمى SHINE، والتي تعتمد على الشبكة العصبية الرسم البيانية (GNN)، لتصنيف النص القصير. أولا، نقوم بنمذت مجموعة بيانات النص القصيرة كشركة بيانية غير متجانسة هرمية تتكون من رسومات مكونة على مستوى Word والتي تقدم معلومات أكثر دلالة ونقصية.بعد ذلك، نتعلم ديناميكيا رسم بياني مستند قصير يسهل نشر الملصقات الفعالة بين النصوص القصيرة المشابهات.وبالتالي، فإن المقارنة مع الأساليب القائمة على GNN القائمة، والتألق يمكن أن يستغل أفضل التفاعلات بين العقد من نفس الأنواع والقبض على أوجه التشابه بين النصوص القصيرة.تظهر تجارب واسعة النطاق على مختلف مجموعات البيانات القصيرة القصيرة المعجمية أن التألق يتفوق باستمرار على الأساليب الحديثة، خاصة مع عدد أقل من الملصقات.
تدرس هذه الورقة التعلم المستمر (CL) من تسلسل مهام تصنيف معنويات الجانب (ASC) في إعداد CL معين يسمى التعلم الإضافي للمجال (DIL).كل مهمة هي من مجال أو منتج مختلف.يعد إعداد DIL مناسبا بشكل خاص للأشعة السوداء لأنه في اختبار لا يحتاج النظام إلى معرفة المه مة / المجال التي تنتمي إليها بيانات الاختبار.لمعرفةنا، لم تتم دراسة هذا الإعداد من قبل للحصول على ASC.تقترح هذه الورقة نموذجا جديدا يسمى الكلاسيكية.الجدة الرئيسية هي طريقة تعلم مستمرة مناقصة تمكن من نقل المعرفة عبر المهام وتقطير المعرفة من المهام القديمة إلى المهمة الجديدة، مما يلغي الحاجة إلى معرفات المهام في الاختبار.النتائج التجريبية تظهر فعالية عالية من الكلاسيكية.
التمثيل الدلالي الذي يدعم اختيار الشبكة المناسبة بين أزواج من الطابور يتناول بطبيعته تماسك الخطاب، وهو أمر مهم للمهام مثل الفهم السردي والحجة وتحليل الخطاب. نقترح طريقة تضمين شرطة رواية تطبق تعلم الرسم البياني في تعلم بنية البيانات، نشير إليها كشركة بيانية مرساة بالاعتماد. يشتمل الرسم البياني أنشور التبعية على نوعين من المعلومات النحوية وبنية الدوائر الانتخابية وعلاقات التبعية، لتسليط الضوء على العلاقة بين الموضوعات والفعال. هذا يعزز جوانب التمثيل المرتبطة بالتماسك. نقوم بتصميم نموذج عصبي لتعلم تمثيل دلالي للحصول على بنود من Confolution Graph حول تمثيلات كامنة لموضوع العبارة الفعلية. نقيم طريقنا على مجموعة بيانات جديدة: مجموعة فرعية من كوربوس كبيرة حيث يتم نشر النصوص المصدر رواية، ومجموعة بيانات جديدة تم جمعها من مقالات الطلاب. توضح النتائج تحسنا كبيرا على النماذج القائمة على الأشجار، مما يؤكد أهمية التركيز على موضوع العبارة والفعل. يوضح فجوة الأداء بين مجموعة البيانات الخاصة بتحديات تحليل النص المكتوب للطالب، بالإضافة إلى مهمة تقييم محتملة لنمذجة التماسك وتطبيقا لاقتراح تنقيحات الطلاب.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا