ترغب بنشر مسار تعليمي؟ اضغط هنا

التعلم عن تعويضات ناقلات الكلمات والتعلم العميق من خلال تنفيذ Word2VEC

Learning about Word Vector Representations and Deep Learning through Implementing Word2vec

258   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعتبر تمثيلات ناقلات الكلمات جزءا أساسيا من منهج NLP.هنا، نصف الواجبات المنزلية التي لديها طلاب تنفيذ طريقة شعبية لتعلم مجاهاجر Word، Word2VEC.يقوم الطلاب بتنفيذ الأجزاء الأساسية للطريقة، بما في ذلك إعادة النظر في النص، وأخذ العينات السلبية، وهبوط التدرج.يوفر رمز البداية إرشادات وتعامل مع العمليات الأساسية، والتي تتيح للطلاب التركيز على الجوانب الصعبة من الناحية النظرية.بعد توليد ناقلاتهم، يقوم الطلاب بتقييمهم باستخدام الاختبارات النوعية والكمية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

ألقى النمو الأسي للإنترنت والوسائط الاجتماعية في العقد الماضي الطريق إلى زيادة نشر المعلومات الخاطئة أو المضللة. منذ الانتخابات الرئاسية الأمريكية لعام 2016، أصبحت مصطلح أخبار وهمية "أصبحت شعبية متزايدة وقد تلقت هذه الظاهرة اهتماما أكبر. في السنوات ا لماضية، تم إنشاء العديد من وكالات فحص الحقائق، ولكن بسبب عدد كبير من الوظائف اليومية على وسائل التواصل الاجتماعي، والفحص اليدوي غير كاف. حاليا، هناك حاجة ملحة لأدوات الكشف عن الأخبار التلقائي، إما لمساعدة قوائم الداما اليدوية أو التشغيل كأدوات قائمة بذاتها. هناك العديد من المشاريع جارية حول هذا الموضوع، لكن معظمهم يركزون على اللغة الإنجليزية. تناقش ورقة البحث في البحث هذه توظيف أساليب التعلم العميق، وتطوير أداة، للكشف عن الأخبار الخاطئة باللغة البرتغالية. كخطوة أولى، سنقوم بمقارنة الهيغات الراسخة التي تم اختبارها بلغات أخرى وتحليل أدائها على بياناتنا البرتغالية. بناء على النتائج الأولية لهذه المصنفات، يجب أن نختار نموذجا للتعلم العميق أو الجمع بين العديد من نماذج التعلم العميق التي تعاني من وعد لتعزيز أداء نظام الكشف عن الأخبار المزيف.
مكنت نماذج اللغة العصبية العميقة مثل بيرت التطورات الأخيرة في العديد من مهام معالجة اللغة الطبيعية. ومع ذلك، نظرا للجهد والتكلفة الحاسوبية المشاركة في التدريب المسبق لها، يتم إدخال هذه النماذج عادة فقط لعدد صغير من لغات الموارد عالية الوزن مثل اللغة الإنجليزية. في حين تتوفر نماذج متعددة اللغات التي تغطي أعدادا كبيرة من اللغات، فإن العمل الحديث يشير إلى أن التدريب أحادي الأحادي يمكن أن ينتج عن نماذج أفضل، وفهمنا للمفاضرة بين التدريب الأحادي وغير اللغوي غير مكتمل. في هذه الورقة، نقدم خط أنابيب بسيطة وأتمتة بالكامل لإنشاء نماذج بيرت الخاصة باللغة من البيانات من بيانات ويكيبيديا وإدخال 42 من هذه النماذج الجديدة، والأكثر من اللازم لغات حتى الآن تفتقر إلى نماذج اللغة العصبية العميقة المخصصة. نقوم بتقييم مزايا هذه النماذج باستخدام اختبارات Cloze و Autify Parser على بيانات التبعيات العالمية، والأداء المتناقض مع النتائج باستخدام طراز Bert (Mbert) متعدد اللغات. نجد أن نماذج WikiBert المقدمة حديثا تفوقت Mbert في اختبارات Cloze لجميع اللغات تقريبا، وأن uDify باستخدام نماذج Wikibert تفوق المحلل باستخدام Mbert في المتوسط، مع توضح الطرز الخاصة باللغة تحسين أداء محسنة بشكل كبير لبعض اللغات، ولكن تحسين محدود أو تحسين انخفاض في الأداء للآخرين. تتوفر جميع الطرق والنماذج المقدمة في هذا العمل تحت التراخيص المفتوحة من https://github.com/turkunlp/wikibert.
يعتبر التعلم العميق القلب النابض للذكاء الصنعي في السنوات الأخيرة، وفي ظل تراوح تطبيقاته بين السيارات ذاتية القيادة وصولًا إلى التحليلات الطبية وغير ذلك، وقدرته على حل المشاكل المعقدة متفوقًا على الإنسان في الكثير من الأحيان، بدا أننا وصلنا للحل النه ائي لمشاكل الذكاء الصنعي، لكن ظهور الهجمات الخادعة أصبح العائق الأساسي لتوظيف التطبيقات التي تعتمد على التعلم العميق كبديل للإنسان، وأصبح التطبيقات الأخيرة تحت المجهر لدراسة قدرتها على منع هذه الهجمات، نستعرض في هذا البحث تعريف الهجوم الخادع وطرقه بشكل عام، ثم نتطرق إلى تطبيقين محورين يمكن مهاجمتهما من خلاله ونعرض كيف نتصدى لهذه الهجمات، مرورًا بمقارنة النماذج الإحصائية مع الإنسان وكون الهجمات الخادعة جزءًا أساسيًا من الأنظمة التي تعتمد على المعطيات للقيام بمهامها.
2163 - MIT press 2016 كتاب
هذا الكتاب تم وضعه من قبل ثلاثة خبراء في المجال, وهو الكتاب الوحيد الذي يشرح تفاصيل واضحة في هذا الموضوع - ايلون موسك
يركز Profner-St على اعتراف المهن والمهن من تويتر باستخدام البيانات الإسبانية.تعتمد مشاركتنا على مزيج من Adgeddings على مستوى الكلمات، بما في ذلك بيرت الإسبانية المدربة مسبقا، بالإضافة إلى تشابه التموين المحسوبة فوق مجموعة فرعية من الكيانات التي تعمل كمدخل للحصول على بنية فك تشفير التشفير مع آلية الاهتمام.أخيرا، حقق أفضل درجة لدينا قياس F1 من 0.823 في مجموعة الاختبار الرسمية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا