تصف هذه الورقة العمل والأنظمة المقدمة من فريق IIIT-HYDERBAD في مهمة WAT 2021 Multiindicmt المشتركة. تغطي المهمة 10 لغات رئيسية من شبه القارة الهندية. بالنسبة لنطاق هذه المهمة، قمنا ببناء أنظمة متعددة اللغات لمدة 20 ساعة توسيعية وهي الإنجليزية-MED (ONE-LICONE) وإرش إنجليزي (كثير إلى واحد). منفردة، اللغات الهندية هي فقراء الموارد التي تعيق جودة الترجمة ولكن من خلال الاستفادة من تعدد اللغات والهدوضة غير اللغوية والنباتية، يمكن تعزيز جودة الترجمة بشكل كبير. لكن أنظمة متعددة اللغات معقدة للغاية من حيث الوقت وكذلك الموارد الحسابية. لذلك، نحن ندرب أنظمتنا من خلال إلقاء البيانات الكفاءة التي سيساهم في الواقع في معظم عملية التعلم. علاوة على ذلك، نحن نستغل أيضا اللغة المتعلقة بعثر بين اللغات الهندية. تم إجراء جميع المقارنات باستخدام نقاط بلو ووجدت أن نظامنا متعدد اللغات النهائي يتفوق بشكل كبير على خطوط الأساس بمعدل 11.3 و 19.6 نقاط بلو لترويج الإنجليزي (EN-XX) وإرادي الإنشاءات الإنجليزي (XX-EN) ، على التوالى.
This paper describes the work and the systems submitted by the IIIT-Hyderbad team in the WAT 2021 MultiIndicMT shared task. The task covers 10 major languages of the Indian subcontinent. For the scope of this task, we have built multilingual systems for 20 translation directions namely English-Indic (one-to- many) and Indic-English (many-to-one). Individually, Indian languages are resource poor which hampers translation quality but by leveraging multilingualism and abundant monolingual corpora, the translation quality can be substantially boosted. But the multilingual systems are highly complex in terms of time as well as computational resources. Therefore, we are training our systems by efficiently se- lecting data that will actually contribute to most of the learning process. Furthermore, we are also exploiting the language related- ness found in between Indian languages. All the comparisons were made using BLEU score and we found that our final multilingual sys- tem significantly outperforms the baselines by an average of 11.3 and 19.6 BLEU points for English-Indic (en-xx) and Indic-English (xx- en) directions, respectively.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نقدم تفاصيل النظم التي قدمناها مقابل WAT 2021 Multiindicmt: مهمة متعددة اللغات.لقد قدمنا نماذج NMT متعددة اللغات منفصلة: واحد للغة الإنجليزية إلى 10 لغات ind وآخر ل 10 لغات ind للغة الإنجليزية.نناقش تفاصيل تنفيذ نهجين منفصلين متعدد الل
تعرف الهند باسم أرض العديد من الألسنة واللهجات. الترجمة الآلية العصبية (NMT) هي النهج الحديث الحالي للترجمة الآلية (MT) ولكنه يعمل بشكل أفضل فقط مع مجموعات البيانات الكبيرة التي تفتقر إليها اللغات الهندية عادة، مما يجعل هذا النهج غير قابل للاستمرار.
الهند هي واحدة من أغنى مراكز اللغات على الأرض وهي متنوعة للغاية وتعدد اللغات. ولكن بصرف النظر عن عدد قليل من اللغات الهندية، ما زال معظمهم يعتبرون فقراء الموارد. نظرا لأن معظم تقنيات NLP تتطلب معرفة لغوية لا يمكن تطويرها إلا من قبل الخبراء والمتحدثين
تصف هذه الورقة مهمة Charles University الفرعية للمصطلحات المهمة المشتركة للترجمة في WMT21.الهدف من هذه المهمة هو تصميم نظام يترجم مع شروط معينة بناء على قاعدة بيانات المصطلحات المقدمة، مع الحفاظ على جودة الترجمة الشاملة عالية.تنافسنا في زوج اللغة الإ
تقدم هذه الورقة مشاركة أنظمة الترجمة الآلية العصبية في مهام الترجمة المشتركة WAT 2021 (معرف الفريق: ساكورا).شاركنا في (I) NIST-SAP، (2) ترجمة متعددة الوسائط اليابانية-الإنجليزية، (III) متعددة اللغات، و (4) مهام الترجمة الإنجليزية Myanmar-English.مناه