ترغب بنشر مسار تعليمي؟ اضغط هنا

نظام TMEKU لمهمة الترجمة متعددة الوسائط WAT2021

TMEKU System for the WAT2021 Multimodal Translation Task

219   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقدم نظام TMEKU الخاص بنا المقدم إلى مهمة الترجمة متعددة الوسائط الإنجليزية اليابانية ل WAT 2021. شاركنا في مهمة Flickr30Kent-JP ومهمة MSCOCO MSCOCO MSCOCON تحت الحالة المقيدة باستخدام مجموعات البيانات المقدمة رسميا.توظف نظامنا المقترح محاذاة ناعمة من Word-Region للترجمة الآلية العصبية متعددة الوسائط (MNMT).تظهر النتائج التجريبية التي تم تقييمها على متري بلو المقدمة من موقع تقييم WAT 2021 أن نظام TMEKU حقق أفضل أداء بين جميع الأنظمة المشاركة.يوضح تحليل آخر دراسة الحالة أن الاستفادة من محاذاة منطقة الكلمات بين الطرائق النصية والمرئية هي مفتاح تعزيز الأداء في نظام TMEKU الخاص بنا، مما يؤدي إلى استخدام معلومات مرئية أفضل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

الترجمة الآلية العصبية (NMT) هي تكنولوجيا ترجمة آلية سائدة في الوقت الحاضر بسبب مرونةها التدريبية المتنقلة المحيرة.ومع ذلك، لا يزال NMT يكافح من أجل الترجمة بشكل صحيح في إعدادات الموارد المنخفضة خصيصا على أزواج اللغة البعيدة.طريقة واحدة للتغلب على ذل ك هي استخدام المعلومات من طرائق أخرى إذا كانت متوفرة.الفكرة هي أنه على الرغم من الاختلافات في اللغات، فإن كل من المصدر والمتحدثين اللغوي المستهدف يرون نفس الشيء والتمثيل المرئي لكل من المصدر والهدف هو نفسه، والذي يمكن أن يساعد النظام بشكل إيجابي.يمكن أن تساعد المعلومات متعددة الوسائط نظام NMT لتحسين الترجمة عن طريق إزالة الغموض على بعض العبارات أو الكلمات.نحن نشارك في ورشة العمل الثامنة حول الترجمة الآسيوية (WAT - 2021) لمهمة الترجمة الإنجليزية العربية الهندية وتحقيق 42.47 و 37.50 نقطة بلو للتقييم والتحدي الفرعي، على التوالي.
تصف هذه الورقة أنظمة Tencent Translation ذات المهمة المشتركة WMT21. نشارك في مهمة ترجمة الأخبار على ثلاث أزواج لغة: الصينية-الإنجليزية والإنجليزية والصينية والألمانية والإنجليزية. يتم بناء أنظمتنا على نماذج محولات مختلفة مع تقنيات جديدة تتكيف من عملن ا البحثي الأخير. أولا، نجمع بين طرق تكبير البيانات المختلفة بما في ذلك الترجمة المرجودة والترجمة الأمامية والتدريب من اليمين إلى اليسار لتوسيع بيانات التدريب. نستخدم أيضا تحيز التغطية اللغوية وتجديد البيانات ونهج أخذ العينات المستندة إلى عدم اليقين لتحديد بيانات ذات صلة بالمحتوى وعالية الجودة من كوربورا متوازية ومونولجة كبيرة. نتوقع أن يتم ضبطه بشكل جيد في المجال، ونقترح أيضا نماذج واحدة المحبوثة نموذج واحد "" لنموذج خصائص نموذجية لأنواع الأخبار المختلفة عند مراحل الركود الدقيقة وفك التشفير. علاوة على ذلك، نستخدم خوارزمية الفرقة القائمة على الجشع وطريقة الفرقة المتناقلة لتعزيز أنظمتنا. بناء على نجاحنا في آخر WMT، فإننا أعملنا باستمرار تقنيات متقدمة مثل التدريب الدفاعي الكبير واختيار البيانات وتصفية البيانات. أخيرا، يحقق نظامنا الصيني والإنجليزي المقيد 33.4 درجة بلو حساسة للحالة، وهو الأعلى بين جميع التقديمات. يتم تصنيف نظام اللغة الإنجليزية الألمانية في المركز الثاني وفقا لذلك.
تصف هذه الورقة تقديم LIT-NLP LAB إلى المهمة المشتركة للترجمة الثلاثي WMT-21 Triangular.لا يسمح للمشاركين باستخدام البيانات الأخرى واتجاه الترجمة لهذه المهمة هو الروسية إلى الصينية.في هذه المهمة، نستخدم المحول كنموذج الأساس لدينا، ودمج العديد من التقن يات لتعزيز أداء الأساس، بما في ذلك تصفية البيانات، واختيار البيانات، والضبط الناعم، والتحرير بعد التحرير.علاوة على ذلك، للاستفادة من موارد اللغة الإنجليزية، مثل البيانات الروسية / الإنجليزية والصينية / الإنجليزية الموازية، يتم إنشاء مثلث العلاقة من خلال أنظمة الترجمة الآلية العصبية متعددة اللغات.نتيجة لذلك، يحقق تقديمنا نقاطا بلو 21.9 في الروسية إلى الصينية.
توضح هذه الورقة تقديم TENTRANS إلى مهمة مشتركة من Translation Translation منخفضة اللغات WMT21 لأزواج اللغة الرومانسية.تركز هذه المهمة على تحسين جودة الترجمة من الكاتالونية إلى Occitan والرومانية والإيطالية، بمساعدة لغات الموارد ذات الصلة ذات الصلة.نح ن نستخدم أساسا الترجمة المرجانية، والطرق القائمة على المحور، ونماذج متعددة اللغات، ونقل النموذج المدربين مسبقا، ونقل المعرفة داخل المجال لتحسين جودة الترجمة.في مجموعة الاختبار، يحقق نظامنا الأفضل المقدم بمتوسط 43.45 درجات بلو حساسة لحالة الأحرف عبر جميع أزواج الموارد المنخفضة.تتوفر بياناتنا ورمز النماذج المدربة مسبقا مسبقا في هذا العمل في أمثلة تقييم Tentrans.
في هذه الورقة، نحن نصف مجموعتنا لمهمة مشاركة اللغة المشتركة للغة 2021. لقد بنينا 3 أنظمة في كل اتجاه لزوج لغة التاميل.تحدد هذه الورقة تجارب مع مخططات التوت المختلفة لتدريب النماذج الإحصائية.نبلغ أيضا عن تكوين الأنظمة والنتائج المقدمة التي ينتجها من قبلها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا