تم إثبات التحسينات الأخيرة المثيرة للإعجاب في NLP، على أساس نجاح نماذج اللغة العصبية السياقية، في معظمها على معظم زوجين من اللغات عالية الموارد. بناء لغة البناء، وبشكل أعم، لا تزال أنظمة NLP للغات غير الموحدة والموارد منخفضة مهمة صعبة. في هذا العمل، نحن fo- cus على اللغة العربية العامية من الشمال الأفريقي العربية المكتوبة باستخدام امتداد من البرنامج النصي اللاتيني، يسمى Narabizi، في الغالب على وسائل التواصل الاجتماعي والرسائل. في هذا السيناريو المنخفض للموارد مع عرض البيانات مستوى كبير من التباين، نقوم بمقارنة أداء المصب لنموذج لغة قائمة على الطابع على وضع علامات جزء من الكلام والاعتماد على نماذج أحادية اللغات وغير اللغوية. نظرا لأن نموذجا مقرا له على الطابع المدرب على جمل 99 ألفا فقط من Narabizi ويتم تغريمه على خرق صغير من هذه اللغة يؤدي إلى أداء قريبة من تلك التي تم الحصول عليها مع نفس الهندسة المعمارية المدربة مسبقا على نماذج كبيرة متعددة اللغات وأنتجة. تؤكد هذه النتائج على مجموعة بيانات أكبر بكثير من المحتوى الناتج عن المستخدم الفرنسي الصاخب، نجح بأن هذه النماذج اللغوية القائمة على الأحرف يمكن أن تكون أصول ل NLP في مجموعة التباين المنخفضة واللغة العالية.
Recent impressive improvements in NLP, largely based on the success of contextual neural language models, have been mostly demonstrated on at most a couple dozen high- resource languages. Building language mod- els and, more generally, NLP systems for non- standardized and low-resource languages remains a challenging task. In this work, we fo- cus on North-African colloquial dialectal Arabic written using an extension of the Latin script, called NArabizi, found mostly on social media and messaging communication. In this low-resource scenario with data display- ing a high level of variability, we compare the downstream performance of a character-based language model on part-of-speech tagging and dependency parsing to that of monolingual and multilingual models. We show that a character-based model trained on only 99k sentences of NArabizi and fined-tuned on a small treebank of this language leads to performance close to those obtained with the same architecture pre- trained on large multilingual and monolingual models. Confirming these results a on much larger data set of noisy French user-generated content, we argue that such character-based language models can be an asset for NLP in low-resource and high language variability set- tings.
المراجع المستخدمة
https://aclanthology.org/
أصبحت الشبكات العصبية العميقة ونماذج اللغة الضخمة في كل شيء في تطبيقات اللغة الطبيعية. نظرا لأنهم معروفون بطلب كميات كبيرة من بيانات التدريب، فهناك مجموعة متنامية من العمل لتحسين الأداء في إعدادات الموارد المنخفضة. بدافع من التغييرات الأساسية الأخيرة
حققت الترجمة الآلية العصبية متعددة اللغات أداء ملحوظا من خلال تدريب نموذج ترجمة واحدة لغات متعددة.تصف هذه الورقة التقديم الخاص بنا (معرف الفريق: CFILT-IITB) لمكتب Multiindicmt: مهمة متعددة اللغات اللغوية في WAT 2021. نقوم بتدريب أنظمة NMT متعددة اللغ
تم انتقاد التمثيل اللغوي المستمدة من النص وحده بسبب نقص الأساس، أي ربط الكلمات مع معانيها في العالم المادي.عرضت نماذج الرؤية واللغة (VL)، التي تم تدريبها بالاشتراك على نص بيانات النص والصورة أو الفيديو كرددا على مثل هذه الانتقادات.ومع ذلك، في حين أظه
التصنيفات هي تمثيل رمزي للعلاقات الهرمية بين المصطلحات أو الكيانات. في حين أن التصنيفات مفيدة في تطبيقات واسعة، فإن تحديثها أو الحفاظ عليها يدويا كثيفة العمالة وصعبة الحجم في الممارسة العملية. تفشل الأساليب الإشرافية التقليدية لهذه المهمة التخصيب هذه
تثبت نماذج اللغة القائمة على المحولات (LMS) على مجموعات نصية كبيرة تخزين ثروة من المعرفة الدلالية. ومع ذلك، 1) أنها ليست فعالة كوسميز الجملة عند استخدامها خارج الرف، و 2) وبالتالي لا تتأخر عادة وراء إعادة احتجازها بشكل تقريبي (E.G.، عبر اختيار الاستج