ﻻ يوجد ملخص باللغة العربية
For some m ge 4, let us color each column of the integer lattice L = Z^2 independently and uniformly into one of m colors. We do the same for the rows, independently from the columns. A point of L will be called blocked if its row and column have the same color. We say that this random configuration percolates if there is a path in L starting at the origin, consisting of rightward and upward unit steps, and avoiding the blocked points. As a problem arising in distributed computing, it has been conjectured that for m ge 4, the configuration percolates with positive probability. This has now been proved (in a later paper), for large m. Here, we prove that the probability that there is percolation to distance n but not to infinity is not exponentially small in n. This narrows the range of methods available for proving the conjecture.
Let v, w be infinite 0-1 sequences, and m a positive integer. We say that w is m-embeddable in v, if there exists an increasing sequence n_{i} of integers with n_{0}=0, such that 0< n_{i} - n_{i-1} < m, w(i) = v(n_i) for all i > 0. Let X and Y be ind
The main result of this paper is that almost every realization of the sine-process with one particle removed is a uniqueness set for the Paley-Wiener space; with two particles removed, a zero set for the Paley-Wiener space.
In this paper, we show that the first passage time in the frog model on $Z^d$ with $dgeq 2$ has a sublinear variance. This implies that the central limit theorem does not holds at least with the standard diffusive scaling. The proof is based on the m
We study the large-$n$ limit of the probability $p_{2n,2k}$ that a random $2ntimes 2n$ matrix sampled from the real Ginibre ensemble has $2k$ real eigenvalues. We prove that, $$lim_{nrightarrow infty}frac {1}{sqrt{2n}} log p_{2n,2k}=lim_{nrightarrow
Local perturbations of a Brownian motion are considered. As a limit we obtain a non-Markov process that behaves as a reflected Brownian motion on the positive half line until its local time at zero reaches some exponential level, then changes a sign