ترغب بنشر مسار تعليمي؟ اضغط هنا

The sine-process has excess one

109   0   0.0 ( 0 )
 نشر من قبل Alexander I. Bufetov
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The main result of this paper is that almost every realization of the sine-process with one particle removed is a uniqueness set for the Paley-Wiener space; with two particles removed, a zero set for the Paley-Wiener space.

قيم البحث

اقرأ أيضاً

The Patterson-Sullivan construction is proved almost surely to recover every harmonic function in a certain Banach space from its values on the zero set of a Gaussian analytic function on the disk. The argument relies on the slow growth of variance f or linear statistics of the concerned point process. As a corollary of reconstruction result in general abstract setting, Patterson-Sullivan reconstruction of harmonic functions is obtained in real and complex hyperbolic spaces of arbitrary dimension.
We show that Sine$_beta$, the bulk limit of the Gaussian $beta$-ensembles is the spectrum of a self-adjoint random differential operator [ fto 2 {R_t^{-1}} left[ begin{array}{cc} 0 &-tfrac{d}{dt} tfrac{d}{dt} &0 end{array} right] f, qquad f:[0,1)to m athbb R^2, ] where $R_t$ is the positive definite matrix representation of hyperbolic Brownian motion with variance $4/beta$ in logarithmic time. The result connects the Montgomery-Dyson conjecture about the Sine$_2$ process and the non-trivial zeros of the Riemann zeta function, the Hilbert-Polya conjecture and de Branges attempt to prove the Riemann hypothesis. We identify the Brownian carousel as the Sturm-Liouville phase function of this operator. We provide similar operator representations for several other finite dimensional random ensembles and their limits: finite unitary or orthogonal ensembles, Hua-Pickrell ensembles and their limits, hard-edge $beta$-ensembles, as well as the Schrodinger point process. In this more general setting, hyperbolic Brownian motion is replaced by a random walk or Brownian motion on the affine group. Our approach provides a unified framework to study $beta$-ensembles that has so far been missing in the literature. In particular, we connect It^os classification of affine Brownian motions with the classification of limits of random matrix ensembles.
We show how the mathematical structure of large-deviation principles matches well with the concept of coarse-graining. For those systems with a large-deviation principle, this may lead to a general approach to coarse-graining through the variational form of the large-deviation functional.
We prove existence and pathwise uniqueness results for four different types of stochastic differential equations (SDEs) perturbed by the past maximum process and/or the local time at zero. Along the first three studies, the coefficients are no longer Lipschitz. The first type is the equation label{eq1} X_{t}=int_{0}^{t}sigma (s,X_{s})dW_{s}+int_{0}^{t}b(s,X_{s})ds+alpha max_{0leq sleq t}X_{s}. The second type is the equation label{eq2} {l} X_{t} =ig{0}{t}sigma (s,X_{s})dW_{s}+ig{0}{t}b(s,X_{s})ds+alpha max_{0leq sleq t}X_{s},,+L_{t}^{0}, X_{t} geq 0, forall tgeq 0. The third type is the equation label{eq3} X_{t}=x+W_{t}+int_{0}^{t}b(X_{s},max_{0leq uleq s}X_{u})ds. We end the paper by establishing the existence of strong solution and pathwise uniqueness, under Lipschitz condition, for the SDE label{e2} X_t=xi+int_0^t si(s,X_s)dW_s +int_0^t b(s,X_s)ds +almax_{0leq sleq t}X_s +be min_{0leq s leq t}X_s.
We study the generalizations of Jonathan Kings rank-one theorems (Weak-Closure Theorem and rigidity of factors) to the case of rank-one R-actions (flows) and rank-one Z^n-actions. We prove that these results remain valid in the case of rank-one flows . In the case of rank-one Z^n actions, where counterexamples have already been given, we prove partial Weak-Closure Theorem and partial rigidity of factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا