ﻻ يوجد ملخص باللغة العربية
Let v, w be infinite 0-1 sequences, and m a positive integer. We say that w is m-embeddable in v, if there exists an increasing sequence n_{i} of integers with n_{0}=0, such that 0< n_{i} - n_{i-1} < m, w(i) = v(n_i) for all i > 0. Let X and Y be independent coin-tossing sequences. We will show that there is an m with the property that Y is m-embeddable into X with positive probability. This answers a question that was open for a while. The proof generalizes somewhat the hierarchical method of an earlier paper of the author on dependent percolation.
We prove distributional convergence for a family of random processes on $mathbb{Z}$, which we call cooperative motions. The model generalizes the totally asymmetric hipster random walk introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitche
We prove a tropical mirror symmetry theorem for descendant Gromov-Witten invariants of the elliptic curve, generalizing a tropical mirror symmetry theorem for Hurwitz numbers of the elliptic curve. For the case of the elliptic curve, the tropical ver
We consider a type of long-range percolation problem on the positive integers, motivated by earlier work of others on the appearance of (in)finite words within a site percolation model. The main issue is whether a given infinite binary word appears w
For some m ge 4, let us color each column of the integer lattice L = Z^2 independently and uniformly into one of m colors. We do the same for the rows, independently from the columns. A point of L will be called blocked if its row and column have the
Let $G$ be a $3$-connected graph with $n$ vertices and $m$ edges. Let $mathbf{p}$ be a randomly chosen mapping of these $n$ vertices to the integer range $[1..2^b]$ for $bge m^2$. Let $mathbf{l}$ be the vector of $m$ Euclidean lengths of $G$s edges u