ﻻ يوجد ملخص باللغة العربية
In this paper, we show that the first passage time in the frog model on $Z^d$ with $dgeq 2$ has a sublinear variance. This implies that the central limit theorem does not holds at least with the standard diffusive scaling. The proof is based on the method introduced in cite{BRo, DHS} combining with a control of the maximal weight of paths in locally dependent site-percolation. We also apply this method to get the linearity of the lengths of optimal paths..
The frog model is a branching random walk on a graph in which particles branch only at unvisited sites. Consider an initial particle density of $mu$ on the full $d$-ary tree of height $n$. If $mu= Omega( d^2)$, all of the vertices are visited in time
We introduce an extension of the frog model to Euclidean space and prove properties for the spread of active particles. Fix $r>0$ and place a particle at each point $x$ of a unit intensity Poisson point process $mathcal P subseteq mathbb R^d - mathbb
The frog model is an interacting particle system on a graph. Active particles perform independent simple random walks, while sleeping particles remain inert until visited by an active particle. Some number of sleeping particles are placed at each sit
We provide a uniform upper bound on the minimal drift so that the one-per-site frog model on a $d$-ary tree is recurrent. To do this, we introduce a subprocess that couples across trees with different degrees. Finding couplings for frog models on nes
The frog model is an infection process in which dormant particles begin moving and infecting others once they become infected. We show that on the rooted $d$-ary tree with particle density $Omega(d^2)$, the set of visited sites contains a linearly ex