ﻻ يوجد ملخص باللغة العربية
Local perturbations of a Brownian motion are considered. As a limit we obtain a non-Markov process that behaves as a reflected Brownian motion on the positive half line until its local time at zero reaches some exponential level, then changes a sign and behaves as a reflected Brownian motion on the negative half line until some stopping time, etc.
The trace of a Markov process is the time changed process of the original process on the support of the Revuz measure used in the time change. In this paper, we will concentrate on the reflecting Brownian motions on certain closed strips. On one hand
Consider a storage system where the content is driven by a Brownian motion absent control. At any time, one may increase or decrease the content at a cost proportional to the amount of adjustment. A decrease of the content takes effect immediately, w
This paper provides yet another look at the mixed fractional Brownian motion (fBm), this time, from the spectral perspective. We derive an approximation for the eigenvalues of its covariance operator, asymptotically accurate up to the second order. T
The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power law shape function and non-stationary
We define kinetic Brownian motion on the diffeomorphism group of a closed Riemannian manifold, and prove that it provides an interpolation between the hydrodynamic flow of a fluid and a Brownian-like flow.