ﻻ يوجد ملخص باللغة العربية
We investigate the physics of quasicrystalline models in the presence of a uniform magnetic field, focusing on the presence and construction of topological states. This is done by using the Hofstadter model but with the sites and couplings denoted by the vertex model of the quasicrystal, giving the Hofstadter vertex model. We specifically consider two-dimensional quasicrystals made from tilings of two tiles with incommensurate areas, focusing on the five-fold Penrose and the eight-fold Ammann-Beenker tilings. This introduces two competing scales; the uniform magnetic field and the incommensurate scale of the cells of the tiling. Due to these competing scales the periodicity of the Hofstadter butterfly is destroyed. We observe the presence of topological edge states on the boundary of the system via the Bott index that exhibit two way transport along the edge. For the eight-fold tiling we also observe internal edge-like states with non-zero Bott index, which exhibit two way transport along this internal edge. The presence of these internal edge states is a new characteristic of quasicrystalline models in magnetic fields. We then move on to considering interacting systems. This is challenging, in part because exact diagonalization on a few tens of sites is not expected to be enough to accurately capture the physics of the quasicrystalline system, and in part because it is not clear how to construct topological flatbands having a large number of states. We show that these problems can be circumvented by building the models analytically, and in this way we construct models with Laughlin type fractional quantum Hall ground states.
Recent formal classifications of crystalline topological insulators predict that the combination of time-reversal and rotational symmetry gives rise to topological invariants beyond the ones known for other lattice symmetries. Although the classifica
Robust edge transport can occur when particles in crystalline lattices interact with an external magnetic field. This system is well described by Blochs theorem, with the spectrum being composed of bands of bulk states and in-gap edge states. When th
We propose a new form of inhomogeneous phases consisting of out-of-phase staggered flux domains separated by diagonal charged domain walls centered on bonds or on sites. Remarkably, such domain flux phases are spin-rotationally symmetric and exhibit
With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly fo
Synthetic fields applied to ultracold quantum gases can realize topological phases that transcend conventional Bose and Fermi-liquid paradigms. Raman laser beams in particular are under scrutiny as a route to create synthetic fields in neutral gases