ﻻ يوجد ملخص باللغة العربية
Epitaxial ferromagnetic metal - semiconductor heterostructures are investigated using polarization-dependent electroabsorption measurements on GaAs p-type and n-type Schottky diodes with embedded In1-xGaxAs quantum wells. We have conducted studies as a function of photon energy, bias voltage, magnetic field, and excitation geometry. For optical pumping with circularly polarized light at energies above the band edge of GaAs, photocurrents with spin polarizations on the order of 1 % flow from the semiconductor to the ferromagnet under reverse bias. For optical pumping at normal incidence, this polarization may be enhanced significantly by resonant excitation at the quantum well ground-state. Measurements in a side-pumping geometry, in which the ferromagnet can be saturated in very low magnetic fields, show hysteresis that is also consistent with spin-dependent transport. Magneto-optical effects that influence these measurements are discussed.
Measurements and modeling of electron spin transport and dynamics are used to characterize hyperfine interactions in Fe/GaAs devices with $n$-GaAs channels. Ga and As nuclei are polarized by electrically injected electron spins, and the nuclear polar
Electrical spin injection from Fe into Al$_x$Ga$_{1-x}$As quantum well heterostructures is demonstrated in small (< 500 Oe) in-plane magnetic fields. The measurement is sensitive only to the component of the spin that precesses about the internal mag
A longstanding goal of research in semiconductor spintronics is the ability to inject, modulate, and detect electron spin in a single device. A simple prototype consists of a lateral semiconductor channel with two ferromagnetic contacts, one of which
We investigate the injection of quasiparticle spin currents into a superconductor via spin pumping from an adjacent FM layer.$;$To this end, we use NbN/ch{Ni80Fe20}(Py)-heterostructures with a Pt spin sink layer and excite ferromagnetic resonance in
The use of the spin Hall effect and its inverse to electrically detect and manipulate dynamic spin currents generated via ferromagnetic resonance (FMR) driven spin pumping has enabled the investigation of these dynamically injected currents across a