ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Nuclear Polarization by Electrical Spin Injection in Ferromagnet-Semiconductor Heterostructures

354   0   0.0 ( 0 )
 نشر من قبل Jonathan Strand
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical spin injection from Fe into Al$_x$Ga$_{1-x}$As quantum well heterostructures is demonstrated in small (< 500 Oe) in-plane magnetic fields. The measurement is sensitive only to the component of the spin that precesses about the internal magnetic field in the semiconductor. This field is much larger than the applied field and depends strongly on the injection current density. Details of the observed hysteresis in the spin injection signal are reproduced in a model that incorporates the magnetocrystalline anisotropy of the epitaxial Fe film, spin relaxation in the semiconductor, and the dynamical polarization of nuclei by the injected spins.



قيم البحث

اقرأ أيضاً

177 - M.K. Chan , Q.O. Hu , J. Zhang 2009
Measurements and modeling of electron spin transport and dynamics are used to characterize hyperfine interactions in Fe/GaAs devices with $n$-GaAs channels. Ga and As nuclei are polarized by electrically injected electron spins, and the nuclear polar ization is detected indirectly through the depolarization of electron spins in the hyperfine field. The dependence of the electron spin signal on injector bias and applied field direction is modeled by a coupled drift-diffusion equation, including effective fields from both the electronic and nuclear polarizations. This approach is used to determine the electron spin polarization independently of the assumptions made in standard transport measurements. The extreme sensitivity of the electron spin dynamics to the nuclear spin polarization also facilitates the electrical detection of nuclear magnetic resonance.
A longstanding goal of research in semiconductor spintronics is the ability to inject, modulate, and detect electron spin in a single device. A simple prototype consists of a lateral semiconductor channel with two ferromagnetic contacts, one of which serves as a source of spin-polarized electrons and the other as a detector. Based on work in analogous metallic systems, two important criteria have emerged for demonstrating electrical detection of spin transport. The first is the measurement of a non-equilibrium spin population using a non-local ferromagnetic detector through which no charge current flows. The potential at the detection electrode should be sensitive to the relative magnetizations of the detector and the source electrodes, a property referred to as the spin-valve effect. A second and more rigorous test is the existence of a Hanle effect, which is the modulation and suppression of the spin valve signal due to precession and dephasing in a transverse magnetic field. Here we report on the observation of both the spin valve and Hanle effects in lateral devices consisting of epitaxial Fe Schottky tunnel barrier contacts on an n-doped GaAs channel. The dependence on transverse magnetic field, temperature, and contact separation are in good agreement with a model incorporating spin drift and diffusion. Spin transport is detected for both directions of current flow through the source electrode. The sign of the electrical detection signal is found to vary with the injection current and is correlated with the spin polarization in the GaAs channel determined by optical measurements. These results therefore demonstrate a fully electrical scheme for spin injection, transport, and detection in a lateral semiconductor device.
Using Fe/GaAs Schottky tunnel barriers as electrical spin detectors, we show that the magnitude and sign of their spin-detection sensitivities can be widely tuned with the voltage bias applied across the Fe/GaAs interface. Experiments and theory esta blish that this tunability derives not just simply from the bias dependence of the tunneling conductances $G_{uparrow,downarrow}$ (a property of the interface), but also from the bias dependence of electric fields in the semiconductor which can dramatically enhance or suppress spin-detection sensitivities. Electrons in GaAs with fixed polarization can therefore be made to induce either positive or negative voltage changes at spin detectors, and some detector sensitivities can be enhanced over ten-fold compared to the usual case of zero-bias spin detection.
We investigate the dynamic nuclear polarization from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins coupled to them in semiconductor nanostructures. We derive the time and position dependence of the induced nuclea r spin polarization and dipolar magnetic fields. In GaAs/AlGaAs parabolic quantum wells the nuclear spin polarization can be as high as 80% and the induced nuclear magnetic fields can approach a few gauss with an associated nuclear resonance shift of the order of kHz when the electronic system is 100% spin polarized. These fields and shifts can be tuned using small electric fields. We discuss the implications of such control for optical nuclear magnetic resonance experiments in low-dimensional semiconductor nanostructures.
Epitaxial ferromagnetic metal - semiconductor heterostructures are investigated using polarization-dependent electroabsorption measurements on GaAs p-type and n-type Schottky diodes with embedded In1-xGaxAs quantum wells. We have conducted studies as a function of photon energy, bias voltage, magnetic field, and excitation geometry. For optical pumping with circularly polarized light at energies above the band edge of GaAs, photocurrents with spin polarizations on the order of 1 % flow from the semiconductor to the ferromagnet under reverse bias. For optical pumping at normal incidence, this polarization may be enhanced significantly by resonant excitation at the quantum well ground-state. Measurements in a side-pumping geometry, in which the ferromagnet can be saturated in very low magnetic fields, show hysteresis that is also consistent with spin-dependent transport. Magneto-optical effects that influence these measurements are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا