ﻻ يوجد ملخص باللغة العربية
The use of the spin Hall effect and its inverse to electrically detect and manipulate dynamic spin currents generated via ferromagnetic resonance (FMR) driven spin pumping has enabled the investigation of these dynamically injected currents across a wide variety of ferromagnetic materials. However, while this approach has proven to be an invaluable diagnostic for exploring the spin pumping process it requires strong spin-orbit coupling, thus substantially limiting the materials basis available for the detector/channel material (primarily Pt, W and Ta). Here, we report FMR driven spin pumping into a weak spin-orbit channel through the measurement of a spin accumulation voltage in a Si-based metal-oxide-semiconductor (MOS) heterostructure. This alternate experimental approach enables the investigation of dynamic spin pumping in a broad class of materials with weak spin-orbit coupling and long spin lifetime while providing additional information regarding the phase evolution of the injected spin ensemble via Hanle-based measurements of the effective spin lifetime.
Ferromagnetic resonance (FMR) driven spin pumping is an emerging technique for injection of a pure spin current from a ferromagnet (FM) into a non-magnetic (NM) material without an accompanying charge current. It is widely believed that this pumping
We show that the accumulation of spin-polarized electrons at a forward-biased Schottky tunnel barrier between Fe and n-GaAs can be detected electrically. The spin accumulation leads to an additional voltage drop across the barrier that is suppressed
Large charge-to-spin conversion (spin Hall angle) and spin Hall conductivity are prerequisites for development of next generation power efficient spintronic devices. In this context, heavy metals (e.g. Pt, W etc.), topological insulators, antiferroma
Due to the difficulty to grow high quality semiconductors on ferromagnetic metals, the study of spin diffusion transport in Si was only limited to lateral geometry devices. In this work, by using ultra-high vacuum wafer-bonding technique, we have suc
Spin transport in electric conductors is largely determined by two material parameters - spin diffusion length and spin Hall angle. In metals, these are typically determined indirectly by probing magnetoresistance in magnet/metal heterostructures, as