ترغب بنشر مسار تعليمي؟ اضغط هنا

Type Ia supernovae in a hierarchical galaxy formation model: the Milky Way

59   0   0.0 ( 0 )
 نشر من قبل Masahiro Nagashima
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate chemical evolution in Milky Way-like galaxies based on the cold dark matter model in which cosmic structures form via hierarchical merging. We introduce chemical enrichment due to type Ia supernovae (SNe Ia) into the Mitaka semi-analytic galaxy formation model developed by Nagashima & Yoshii. For the first time we derive distributions of stellar metallicities and their ratios in Milky Way-like galaxies treating chemical enrichment due to SNe Ia in a hierarchical galaxy formation model self-consistently. As a first attempt, we assume all SNe Ia to have the same lifetime, and assume instantaneous recycling for type II supernovae (SNe II). We find that our model reproduces well the metal abundance ratio [O/Fe] against [Fe/H] and the {iron metallicity distribution function} in the solar neighborhood. This means that the so-called G-dwarf problem is resolved by the hierarchical formation of galaxies, and a gas infall term introduced in traditional monolithic collapse models to solve this problem is well explained by the mixture of some physical processes such as hierarchical merging of dark halos, gas cooling, energy feedback and injection of gas and metals into hot gas due to supernovae. Our model predicts more oxygen-enhanced stars in bulges at [Fe/H] $simeq 0$ than in disks. This trend seems to be supported by recent observations while they have still uncertainties. More data in number and accuracy will provide independent and important constraints on galaxy formation. (abridged)

قيم البحث

اقرأ أيضاً

The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the build-up of heavy metals in the universe inferred from observed star formation and supernovae rate histo ries with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are consistent with observations in the field, cluster Fe enrichment immediately tracks a rapid, top-heavy phase of star formation -- although transport of Fe into the ICM may be more prolonged and star formation likely continues to redshifts <1. The source of this prompt enrichment is Type II supernovae (SNII) yielding at least 0.1 solar masses per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3-8 solar mass range) and/or SNIa explosions with short delay times associated with the rapid star formation mode. Star formation is >3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.
We present a model of the Galactic Habitable Zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favour the development of complex life. The Milky Way galaxy is modelled using a computational approach by popul ating stars and their planetary systems on an individual basis using Monte-Carlo methods. We begin with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We vary some of these properties, creating four models to test the sensitivity of our assumptions. To assess habitability on the Galactic scale, we model supernova rates, planet formation, and the time required for complex life to evolve. Our study improves on other literature on the GHZ by populating stars on an individual basis and by modelling SNII and SNIa sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we consider habitability on tidally locked and non-tidally locked planets separately, and study habitability as a function of height above and below the Galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ~5.6 times more lethal than an individual SNII on average. In addition, we predict that ~1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ~75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found towards the inner Galaxy, distributed within, and significantly above and below, the Galactic midplane.
53 - Ortwin Gerhard 2006
In its first part, this paper summarizes recent work on the mass and shape of the Galactic dark halo. The second part presents a review of the large-scale structure of the Milky Way, and of the evidence that the inner Galaxy is dominated by baryonic matter. This is briefly compared with the predictions of LCDM and MOND. Finally, a summary is given of bulge formation from clumpy, gas-rich disks, a process which may give rise to old, disk-like, alpha-rich bulges similar to the Galactic bulge.
65 - Keren Sharon 2006
Supernova (SN) rates are a potentially powerful diagnostic of star formation history (SFH), metal enrichment, and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials, and simple SFH. However, a low-redshift cluster SN rate has never been published. We derive the SN rate in galaxy clusters at 0.06<z<0.19, based on type Ia supernovae (SNe Ia) that were discovered by the Wise Observatory Optical Transient Survey. As described in a separate paper, a sample of 140 rich Abell clusters was monitored, in which six cluster SNe Ia were found and confirmed spectroscopically. Here, we determine the SN detection efficiencies of the individual survey images, and combine the efficiencies with the known spectral properties of SNe Ia to calculate the effective visibility time of the survey. The cluster stellar luminosities are measured from the Sloan Digital Sky Survey (SDSS) database in the griz SDSS bands. Uncertainties are estimated using Monte-Carlo simulations in which all input parameters are allowed to vary over their known distributions. We derive SN rates normalized by stellar luminosity, in SNU units (SNe per century per 10^10 L_sun) in five photometric bandpasses, of 0.36+/-(0.22,0.14)+/-0.02 (B), 0.351+/-(0.210,0.139)+/-0.020 (g), 0.288+/-(0.172,0.114)+/-0.018 (r), 0.229+/-(0.137,0.091)+/-0.014 (i), 0.186+/-(0.111,0.074)+/-0.010 (z), where the quoted errors are statistical and systematic, respectively. The SN rate per stellar mass unit, derived using a color-luminosity-mass relation, is 0.098+/-(0.059,0.039)+/-0.009 SNe (century 10^10 M_sun)^-1. The low cluster SN rates we find are similar to, and consistent with, the SN Ia rate in local elliptical galaxies.
Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effect s, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of a intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude ($M_B$ vs. $B-V$) slope $beta_{int}$ differs from the host galaxy dust law $R_B$, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from $beta_{int}$ in the blue tail to $R_B$ in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope $beta_{app}$ between $beta_{int}$ and $R_B$. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 248 nearby SN Ia at z < 0.10. The conventional linear fit obtains $beta_{app} approx 3$. Our model finds a $beta_{int} = 2.3 pm 0.3$ and a distinct dust law of $R_B = 3.8 pm 0.3$, consistent with the average for Milky Way dust, while correcting a systematic distance bias of $sim 0.10$ mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا