ترغب بنشر مسار تعليمي؟ اضغط هنا

A Model of Habitability Within the Milky Way Galaxy

206   0   0.0 ( 0 )
 نشر من قبل Michael Gowanlock
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model of the Galactic Habitable Zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favour the development of complex life. The Milky Way galaxy is modelled using a computational approach by populating stars and their planetary systems on an individual basis using Monte-Carlo methods. We begin with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We vary some of these properties, creating four models to test the sensitivity of our assumptions. To assess habitability on the Galactic scale, we model supernova rates, planet formation, and the time required for complex life to evolve. Our study improves on other literature on the GHZ by populating stars on an individual basis and by modelling SNII and SNIa sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we consider habitability on tidally locked and non-tidally locked planets separately, and study habitability as a function of height above and below the Galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ~5.6 times more lethal than an individual SNII on average. In addition, we predict that ~1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ~75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found towards the inner Galaxy, distributed within, and significantly above and below, the Galactic midplane.



قيم البحث

اقرأ أيضاً

It is a common assumption that high-altitude open clusters live longer compared with clusters moving close to the Galactic plane. This is because at high altitudes, open clusters are far from the disruptive effects of in-plane substructures, such as spiral arms, molecular clouds and the bar. However, an important aspect to consider in this scenario is that orbits of high-altitude open clusters will eventually cross the Galactic plane, where the vertical tidal field of the disk is strong. In this work we simulate the interaction of open clusters with the tidal field of a detailed Milky Way Galactic model at different average altitudes and galactocentric radii. We find that the life expectancy of clusters decreases as the maximum orbital altitude increases and reaches a minimum at altitudes of approximately 600 pc. Clusters near the Galactic plane live longer because they do not experience strong vertical tidal shocks from the Galactic disk; then, for orbital altitudes higher than 600 pc, clusters start again to live longer due to the decrease in the number of encounters with the disk. With our study, we find that the compressive nature of the tides in the arms region and the bar have an important role on the survival of small clusters by protecting them from disruption: clusters inside the arms can live up to twice as long as those outside the arms at similar galactocentric distance.
During the past 20 years, numerous stellar streams have been discovered in both the Milky Way and the Local Group. These streams have been tidally torn from orbiting systems, which suggests that most of them should roughly trace the orbit of their pr ogenitors around the Galaxy. As a consequence, they play a fundamental role in understanding the formation and evolution of our Galaxy. This project is based on the possibility of applying a technique developed by Binney in 2008 to various tidal streams and overdensities in the Galaxy. The aim is to develop an efficient method to constrain the Galactic gravitational potential, to determine its mass distribution, and to test distance measurements. Here we apply the technique to the Grillmair & Dionatos cold stellar stream. In the case of noise-free data, the results show that the technique provides excellent discrimination against incorrect potentials and that it is possible to predict the heliocentric distance very accurately. This changes dramatically when errors are taken into account, which wash out most of the results. Nevertheless, it is still possible to rule out spherical potentials and set constraints on the distance of a given stream.
150 - L. G. Hou 2009
The spiral structure of our Milky Way Galaxy is not yet known. HII regions and giant molecular clouds are the most prominent spiral tracers. We collected the spiral tracer data of our Milky Way from the literature, namely, HII regions and giant molec ular clouds (GMCs). With weighting factors based on the excitation parameters of HII regions or the masses of GMCs, we fitted the distribution of these tracers with models of two, three, four spiral-arms or polynomial spiral arms. The distances of tracers, if not available from stellar or direct measurements, were estimated kinetically from the standard rotation curve of Brand & Blitz (1993) with $R_0$=8.5 kpc, and $Theta_0$=220 km s$^{-1}$ or the newly fitted rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ or $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$. We found that the two-arm logarithmic model cannot fit the data in many regions. The three- and the four-arm logarithmic models are able to connect most tracers. However, at least two observed tangential directions cannot be matched by the three- or four-arm model. We composed a polynomial spiral arm model, which can not only fit the tracer distribution but also match observed tangential directions. Using new rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ and $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$ for the estimation of kinematic distances, we found that the distribution of HII regions and GMCs can fit the models well, although the results do not change significantly compared to the parameters with the standard $R_0$ and $Theta_0$.
We investigate chemical evolution in Milky Way-like galaxies based on the cold dark matter model in which cosmic structures form via hierarchical merging. We introduce chemical enrichment due to type Ia supernovae (SNe Ia) into the Mitaka semi-analyt ic galaxy formation model developed by Nagashima & Yoshii. For the first time we derive distributions of stellar metallicities and their ratios in Milky Way-like galaxies treating chemical enrichment due to SNe Ia in a hierarchical galaxy formation model self-consistently. As a first attempt, we assume all SNe Ia to have the same lifetime, and assume instantaneous recycling for type II supernovae (SNe II). We find that our model reproduces well the metal abundance ratio [O/Fe] against [Fe/H] and the {iron metallicity distribution function} in the solar neighborhood. This means that the so-called G-dwarf problem is resolved by the hierarchical formation of galaxies, and a gas infall term introduced in traditional monolithic collapse models to solve this problem is well explained by the mixture of some physical processes such as hierarchical merging of dark halos, gas cooling, energy feedback and injection of gas and metals into hot gas due to supernovae. Our model predicts more oxygen-enhanced stars in bulges at [Fe/H] $simeq 0$ than in disks. This trend seems to be supported by recent observations while they have still uncertainties. More data in number and accuracy will provide independent and important constraints on galaxy formation. (abridged)
120 - Yuri N.Efremov 2010
We consider the possible pattern of the overall spiral structure of the Galaxy, using data on the distribution of neutral (atomic), molecular, and ionized hydrogen, on the base of the hypothesis of the spiral structure being symmetric, i.e. the assum ption that spiral arms are translated into each other for a rotation around the galactic center by 180{deg} (a two-arm pattern) or by 90{deg} (a four-arm pattern). We demonstrate that, for the inner region, the observations are best represented with a four-arm scheme of the spiral pattern, associated with all-Galaxy spiral density waves. The basic position is that of the Carina arm, reliably determined from distances to HII regions and from HI and H2 radial velocities. This pattern is continued in the quadrants III and IV with weak outer HI arms; from their morphology, the Galaxy should be considered an asymmetric multi-arm spiral. The kneed shape of the outer arms that consist of straight segments can indicate that these arms are transient formations that appeared due to a gravitational instability in the gas disk. The distances between HI superclouds in the two arms that are the brightest in neutral hydrogen, the Carina arm and the Cygnus (Outer) arm, concentrate to two values, permitting to assume the presence of a regular magnetic field in these arms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا