ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernovae in Low-Redshift Galaxy Clusters: the Type-Ia Supernova Rate

66   0   0.0 ( 0 )
 نشر من قبل Keren Sharon
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Keren Sharon




اسأل ChatGPT حول البحث

Supernova (SN) rates are a potentially powerful diagnostic of star formation history (SFH), metal enrichment, and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials, and simple SFH. However, a low-redshift cluster SN rate has never been published. We derive the SN rate in galaxy clusters at 0.06<z<0.19, based on type Ia supernovae (SNe Ia) that were discovered by the Wise Observatory Optical Transient Survey. As described in a separate paper, a sample of 140 rich Abell clusters was monitored, in which six cluster SNe Ia were found and confirmed spectroscopically. Here, we determine the SN detection efficiencies of the individual survey images, and combine the efficiencies with the known spectral properties of SNe Ia to calculate the effective visibility time of the survey. The cluster stellar luminosities are measured from the Sloan Digital Sky Survey (SDSS) database in the griz SDSS bands. Uncertainties are estimated using Monte-Carlo simulations in which all input parameters are allowed to vary over their known distributions. We derive SN rates normalized by stellar luminosity, in SNU units (SNe per century per 10^10 L_sun) in five photometric bandpasses, of 0.36+/-(0.22,0.14)+/-0.02 (B), 0.351+/-(0.210,0.139)+/-0.020 (g), 0.288+/-(0.172,0.114)+/-0.018 (r), 0.229+/-(0.137,0.091)+/-0.014 (i), 0.186+/-(0.111,0.074)+/-0.010 (z), where the quoted errors are statistical and systematic, respectively. The SN rate per stellar mass unit, derived using a color-luminosity-mass relation, is 0.098+/-(0.059,0.039)+/-0.009 SNe (century 10^10 M_sun)^-1. The low cluster SN rates we find are similar to, and consistent with, the SN Ia rate in local elliptical galaxies.

قيم البحث

اقرأ أيضاً

Supernova (SN) rates are potentially powerful diagnostics of metal enrichment and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials and relatively simple star-formation histories. We have carried out a survey for supernovae (SNe) in galaxy clusters, at a redshift range 0.5<z<0.9, using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. We reimaged a sample of 15 clusters that were previously imaged by ACS, thus obtaining two to three epochs per cluster, in which we discovered five likely cluster SNe, six possible cluster SNe Ia, two hostless SN candidates, and several background and foreground events. Keck spectra of the host galaxies were obtained to establish cluster membership. We conducted detailed efficiency simulations, and measured the stellar luminosities of the clusters using Subaru images. We derive a cluster SN rate of 0.35 SNuB +0.17/-0.12 (statistical) pm0.13 (classification) pm0.01 (systematic) [where SNuB = SNe (100 yr 10^10 L_B_sun)^-1] and 0.112 SNuM +0.055/-0.039 (statistical) pm0.042 (classification) pm0.005 (systematic) [where SNuM = SNe (100 yr 10^10 M_sun)^-1]. As in previous measurements of cluster SN rates, the uncertainties are dominated by small-number statistics. The SN rate in this redshift bin is consistent with the SN rate in clusters at lower redshifts (to within the uncertainties), and shows that there is, at most, only a slight increase of cluster SN rate with increasing redshift. The low and fairly constant SN Ia rate out to z~1 implies that the bulk of the iron mass in clusters was already in place by z~1. The recently observed doubling of iron abundances in the intracluster medium between z=1 and 0, if real, is likely the result of redistribution of existing iron, rather than new production of iron.
We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.45 from the Hubble Space Telescope (HST) Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 + /- 1 cluster SNe Ia, we determine a SN Ia rate of 0.50 +0.23-0.19 (stat) +0.10-0.09 (sys) SNuB (SNuB = 10^-12 SNe L_{sun,B}^-1 yr^-1). In units of stellar mass, this translates to 0.36 +0.16-0.13 (stat) +0.07-0.06 (sys) SNuM (SNuM = 10^-12 SNe M_sun^-1 yr^-1). This represents a factor of approximately 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution with a power law (proportional to t^s). Under the assumption of a cluster formation redshift of z_f = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41 +0.47/-0.40, consistent with measurements of the delay time distribution in the field. This measurement is generally consistent with expectations for the double degenerate scenario and inconsistent with some models for the single degenerate scenario predicting a steeper delay time distribution at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one host-less cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.
ABRIDGED We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z <0.17 and 27 SN events in 492 maxBCG clusters at 0.1 < z < 0.3$. We find values for the cluster SN Ia rate of $({0.37}^{+0.17+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.55}^{+0.13+0.02}_{-0.11-0.01}) mathrm{SNu}r h^{2}$ ($mathrm{SNu}x = 10^{-12} L_{xsun}^{-1} mathrm{yr}^{-1}$) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be $({0.31}^{+0.18+0.01}_{-0.12-0.01}) mathrm{SNu}r h^{2}$ and $({0.49}^{+0.15+0.02}_{-0.11-0.01})$ $mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be $({2.04}^{+1.99+0.07}_{-1.11-0.04}) mathrm{SNu}r h^{2}$ and $({0.36}^{+0.84+0.01}_{-0.30-0.01}) mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is ${1.94}^{+1.31+0.043}_{-0.91-0.015}$ and ${3.02}^{+1.31+0.062}_{-1.03-0.048}$, for C4 and maxBCG clusters. The SN rate in galaxy clusters as a function of redshift...shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find $r_{L} = $ $[(0.49^{+0.15}_{-0.14}) +$ $(0.91^{+0.85}_{-0.81}) times z]$ $mathrm{SNu}B$ $h^{2}$. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies... we estimate the fraction of cluster SNe that are hostless to be $(9.4^+8._3-5.1)%$.
The observed delay-time distribution (DTD) of Type-Ia supernovae (SNe Ia) is a valuable probe of SN Ia progenitors and physics, and of the role of SNe Ia in cosmic metal enrichment. The SN Ia rate in galaxy clusters as a function of cluster redshift is an almost-direct measure of the DTD, but current estimates have been limited out to a mean redshift z=1.1, corresponding to time delays, after cluster star-formation, of over 3.2 Gyr. We analyze data from a Hubble Space Telescope monitoring project of 12 galaxy clusters at z=1.13-1.75, where we discover 29 SNe, and present their multi-band light curves. Based on the SN photometry and the apparent host galaxies, we assess cluster membership and SN type, finding 11 cases that are likely SNe Ia in cluster galaxies and 4 more cases which are possible but not certain cluster SNe Ia. We conduct simulations to estimate the SN detection efficiency, the experiments completeness, and the photometric errors, and perform photometry of the cluster galaxies to derive the cluster stellar masses. Separating the cluster sample into high-z and low-z bins, we obtain rest-frame SN Ia rates per unit formed stellar mass of $2.2 ^{+2.6}_{-1.3}times 10^{-13}{rm yr}^{-1}{rm M}_odot^{-1}$ at a mean redshift z=1.25, and $3.5^{+6.6}_{-2.8} times 10^{-13}{rm yr}^{-1}{rm M}_odot^{-1}$ at z=1.58. Combining our results with previous cluster SN Ia rates, we fit the DTD, now down to delays of 1.5 Gyr, with a power-law dependence, $t^alpha$, with $alpha=-1.30^{+0.23}_{-0.16}$. We confirm previous indications for a Hubble-time-integrated SN Ia production efficiency that is several times higher in galaxy clusters than in the field, perhaps caused by a peculiar stellar initial mass function in clusters, or by a higher incidence of binaries that will evolve into SNe Ia.
The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of ~100 low-redshift Type Ia supernovae in a well-defined photometric system. Here we present the first r elease of photometric data that contains the optical light curves of 35 Type Ia supernovae, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (YJHKs) data points in the natural system of the Swope telescope. Twenty-eight supernovae have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate datasets of low-redshift Type Ia supernovae published to date. When completed, the CSP dataset will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of Type Ia supernovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا