ترغب بنشر مسار تعليمي؟ اضغط هنا

On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

60   0   0.0 ( 0 )
 نشر من قبل Michael Loewenstein
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the build-up of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are consistent with observations in the field, cluster Fe enrichment immediately tracks a rapid, top-heavy phase of star formation -- although transport of Fe into the ICM may be more prolonged and star formation likely continues to redshifts <1. The source of this prompt enrichment is Type II supernovae (SNII) yielding at least 0.1 solar masses per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3-8 solar mass range) and/or SNIa explosions with short delay times associated with the rapid star formation mode. Star formation is >3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.


قيم البحث

اقرأ أيضاً

By means of 3D hydrodynamic simulations, we study how Type Ia supernovae (SNe) explosions affect the star formation history and the chemical properties of second generation (SG) stars in globular clusters (GC). SG stars are assumed to form once first generation asymptotic giant branch (AGB) stars start releasing their ejecta; during this phase, external gas is accreted by the system and SNe Ia begin exploding, carving hot and tenuous bubbles. Given the large uncertainty on SNe Ia explosion times, we test two different values for the delay time. We run two different models for the external gas density: in the low-density scenario with short delay time, the explosions start at the beginning of the SG star formation, halting it in its earliest phases. The external gas hardly penetrates the system, therefore most SG stars present extreme helium abundances (Y > 0.33). The low-density model with delayed SN explosions has a more extended SG star formation epoch and includes SG stars with modest helium enrichment. On the contrary, the high-density model is weakly affected by SN explosions, with a final SG mass similar to the one obtained without SNe Ia. Most of the stars form from a mix of AGB ejecta and pristine gas and have a modest helium enrichment. We show that gas from SNe Ia may produce an iron spread of $sim 0.14$ dex, consistent with the spread found in about 20% of Galactic GCs, suggesting that SNe Ia might have played a key role in the formation of this sub-sample of GCs.
We present the dependences of the properties of type Ia Supernovae (SNe Ia) on their host galaxies by analyzing the multi-band lightcurves of 118 spectroscopically confirmed SNe Ia observed by the Sloan Digital Sky Survey (SDSS) Supernova Survey and the spectra of their host galaxies. We derive the equivalent width of the rm{H}$alpha$ emission line, star formation rate, and gas-phase metallicity from the spectra and compare these with the lightcurve widths and colors of SNe Ia. In addition, we compare host properties with the deviation of the observed distance modulus corrected for lightcurve parameters from the distance modulus determined by the best fit cosmological parameters. This allows us to investigate uncorrected systematic effects in the magnitude standardization. We find that SNe Ia in host galaxies with a higher star formation rate have synthesized on average a larger $^{56}$Ni mass and show wider lightcurves. The $^{56}$Ni mass dependence on metallicity is consistent with a prediction of Timmes et al. 2003 based on nucleosynthesis. SNe Ia in metal-rich galaxies ({$log_{10}(O/H)+12>8.9$) have become 0.13 $pm$ 0.06 magnitude brighter after corrections for their lightcurve widths and colors, which corresponds to up to 6% uncertainty in the luminosity distance. We investigate whether parameters for standardizing SN Ia maximum magnitude differ among samples with different host characteristics. The coefficient of the color term is larger by 0.67 $pm$ 0.19 for SNe Ia in metal-poor hosts than those in metal-rich hosts when no color cuts are imposed.
We present analytical reconstructions of type Ia supernova (SN Ia) delay time distributions (DTDs) by way of two independent methods: by a Markov chain Monte Carlo best-fit technique comparing the volumetric SN Ia rate history to todays compendium co smic star-formation history, and secondly through a maximum likelihood analysis of the star formation rate histories of individual galaxies in the GOODS/CANDELS field, in comparison to their resultant SN Ia yields. We adopt a flexible skew-normal DTD model, which could match a wide range of physically motivated DTD forms. We find a family of solutions that are essentially exponential DTDs, similar in shape to the $betaapprox-1$ power-law DTDs, but with more delayed events (>1 Gyr in age) than prompt events (<1 Gyr). Comparing these solutions to delay time measures separately derived from field galaxies and galaxy clusters, we find the skew-normal solutions can accommodate both without requiring a different DTD form in different environments. These model fits are generally inconsistent with results from single-degenerate binary population synthesis models, and are seemingly supportive of double-degenerate progenitors for most SN Ia events.
65 - Keren Sharon 2006
Supernova (SN) rates are a potentially powerful diagnostic of star formation history (SFH), metal enrichment, and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials, and simple SFH. However, a low-redshift cluster SN rate has never been published. We derive the SN rate in galaxy clusters at 0.06<z<0.19, based on type Ia supernovae (SNe Ia) that were discovered by the Wise Observatory Optical Transient Survey. As described in a separate paper, a sample of 140 rich Abell clusters was monitored, in which six cluster SNe Ia were found and confirmed spectroscopically. Here, we determine the SN detection efficiencies of the individual survey images, and combine the efficiencies with the known spectral properties of SNe Ia to calculate the effective visibility time of the survey. The cluster stellar luminosities are measured from the Sloan Digital Sky Survey (SDSS) database in the griz SDSS bands. Uncertainties are estimated using Monte-Carlo simulations in which all input parameters are allowed to vary over their known distributions. We derive SN rates normalized by stellar luminosity, in SNU units (SNe per century per 10^10 L_sun) in five photometric bandpasses, of 0.36+/-(0.22,0.14)+/-0.02 (B), 0.351+/-(0.210,0.139)+/-0.020 (g), 0.288+/-(0.172,0.114)+/-0.018 (r), 0.229+/-(0.137,0.091)+/-0.014 (i), 0.186+/-(0.111,0.074)+/-0.010 (z), where the quoted errors are statistical and systematic, respectively. The SN rate per stellar mass unit, derived using a color-luminosity-mass relation, is 0.098+/-(0.059,0.039)+/-0.009 SNe (century 10^10 M_sun)^-1. The low cluster SN rates we find are similar to, and consistent with, the SN Ia rate in local elliptical galaxies.
We obtained optical and near-infrared spectra of Type$,$Ia supernovae (SNe$,$Ia) at epochs ranging from 224 to 496 days after the explosion. The spectra show emission lines from forbidden transitions of singly ionised iron and cobalt atoms. We used n on-local thermodynamic equilibrium (NLTE) modelling of the first and second ionisation stages of iron, nickel, and cobalt to fit the spectra using a sampling algorithm allowing us to probe a broad parameter space. We derive velocity shifts, line widths, and abundance ratios for iron and cobalt. The measured line widths and velocity shifts of the singly ionised ions suggest a shared emitting region. Our data are fully compatible with radioactive $^{56}$Ni decay as the origin for cobalt and iron. We compare the measured abundance ratios of iron and cobalt to theoretical predictions of various SN$,$Ia explosion models. These models include, in addition to $^{56}$Ni, different amounts of $^{57}$Ni and stable $^{54,56}$Fe. We can exclude models that produced only $^{54,56}$Fe or only $^{57}$Ni in addition to $^{56}$Ni. If we consider a model that has $^{56}$Ni, $^{57}$Ni, and $^{54,56}$Fe then our data imply that these ratios are $^{54,56}$Fe / $^{56}$Ni $=0.272pm0.086$ and $^{57}$Ni / $^{56}$Ni $=0.032pm0.011$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا