ﻻ يوجد ملخص باللغة العربية
We model investor heterogeneity using different required returns on an investment and evaluate the impact on the valuation of an investment. By assuming no disagreement on the cash flows, we emphasize how risk preferences in particular, but also the costs of capital, influence a subjective evaluation of the decision to invest now or retain the option to invest in future. We propose a risk-adjusted valuation model to facilitate investors subjective decision making, in response to the market valuation of an investment opportunity. The investors subjective assessment arises from their perceived misvaluation of the investment by the market, so projected cash flows are discounted using two different rates representing the investors and the markets view. This liberates our model from perfect or imperfect hedging assumptions and instead, we are able to illustrate the hedging effect on the real option value when perceptions of risk premia diverge. During crises periods, delaying an investment becomes more valuable as the idiosyncratic risk of future cash flows increases, but the decision-maker may rush to invest too quickly when the risk level is exceptionally high. Our model verifies features established by classical real-option valuation models and provides many new insights about the importance of modelling divergences in decision-makers risk premia, especially during crisis periods. It also has many practical advantages because it requires no more parameter inputs than basic discounted cash flow approaches, such as the marketed asset disclaimer method, but the outputs are much richer. They allow for complex interactions between cost and revenue uncertainties as well as an easy exploration of the effects of hedgeable and un-hedgeable risks on the real option value. Furthermore, we provide fully-adjustable Python code in which all parameter values can be chosen by the user.
We introduce a general decision tree framework to value an option to invest/divest in a project, focusing on the model risk inherent in the assumptions made by standard real option valuation methods. We examine how real option values depend on the dy
In this note we consider a system of financial institutions and study systemic risk measures in the presence of a financial market and in a robust setting, namely, where no reference probability is assigned. We obtain a dual representation for convex
Transition probability densities are fundamental to option pricing. Advancing recent work in deep learning, we develop novel transition density function generators through solving backward Kolmogorov equations in parametric space for cumulative proba
Artificial neural networks (ANNs) have recently also been applied to solve partial differential equations (PDEs). In this work, the classical problem of pricing European and American financial options, based on the corresponding PDE formulations, is
This paper introduces an intermediary between conditional expectation and conditional sublinear expectation, called R-conditioning. The R-conditioning of a random-vector in $L^2$ is defined as the best $L^2$-estimate, given a $sigma$-subalgebra and a