ﻻ يوجد ملخص باللغة العربية
This paper introduces an intermediary between conditional expectation and conditional sublinear expectation, called R-conditioning. The R-conditioning of a random-vector in $L^2$ is defined as the best $L^2$-estimate, given a $sigma$-subalgebra and a degree of model uncertainty. When the random vector represents the payoff of derivative security in a complete financial market, its R-conditioning with respect to the risk-neutral measure is interpreted as its risk-averse value. The optimization problem defining the optimization R-conditioning is shown to be well-posed. We show that the R-conditioning operators can be used to approximate a large class of sublinear expectations to arbitrary precision. We then introduce a novel numerical algorithm for computing the R-conditioning. This algorithm is shown to be strongly convergent. Implementations are used to compare the risk-averse value of a Vanilla option to its traditional risk-neutral value, within the Black-Scholes-Merton framework. Concrete connections to robust finance, sensitivity analysis, and high-dimensional estimation are all treated in this paper.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves
Risk assessment under different possible scenarios is a source of uncertainty that may lead to concerning financial losses. We address this issue, first, by adapting a robust framework to the class of spectral risk measures. Second, we propose a Devi
We consider the problem of designing policies for partially observable Markov decision processes (POMDPs) with dynamic coherent risk objectives. Synthesizing risk-averse optimal policies for POMDPs requires infinite memory and thus undecidable. To ov
We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES)
This paper proposes a paradigm shift in the valuation of long term annuities, away from classical no-arbitrage valuation towards valuation under the real world probability measure. Furthermore, we apply this valuation method to two examples of annuit