ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Risk in Real Option Valuation

70   0   0.0 ( 0 )
 نشر من قبل Carol Alexander Prof.
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a general decision tree framework to value an option to invest/divest in a project, focusing on the model risk inherent in the assumptions made by standard real option valuation methods. We examine how real option values depend on the dynamics of project value and investment costs, the frequency of exercise opportunities, the size of the project relative to initial wealth, the investors risk tolerance (and how it changes with wealth) and several other choices about model structure. For instance, contrary to stylized facts from previous literature, real option values can actually decrease with the volatility of the underlying project value and increase with investment costs.



قيم البحث

اقرأ أيضاً

We model investor heterogeneity using different required returns on an investment and evaluate the impact on the valuation of an investment. By assuming no disagreement on the cash flows, we emphasize how risk preferences in particular, but also the costs of capital, influence a subjective evaluation of the decision to invest now or retain the option to invest in future. We propose a risk-adjusted valuation model to facilitate investors subjective decision making, in response to the market valuation of an investment opportunity. The investors subjective assessment arises from their perceived misvaluation of the investment by the market, so projected cash flows are discounted using two different rates representing the investors and the markets view. This liberates our model from perfect or imperfect hedging assumptions and instead, we are able to illustrate the hedging effect on the real option value when perceptions of risk premia diverge. During crises periods, delaying an investment becomes more valuable as the idiosyncratic risk of future cash flows increases, but the decision-maker may rush to invest too quickly when the risk level is exceptionally high. Our model verifies features established by classical real-option valuation models and provides many new insights about the importance of modelling divergences in decision-makers risk premia, especially during crisis periods. It also has many practical advantages because it requires no more parameter inputs than basic discounted cash flow approaches, such as the marketed asset disclaimer method, but the outputs are much richer. They allow for complex interactions between cost and revenue uncertainties as well as an easy exploration of the effects of hedgeable and un-hedgeable risks on the real option value. Furthermore, we provide fully-adjustable Python code in which all parameter values can be chosen by the user.
80 - Foad Shokrollahi 2017
This paper deals with the problem of discrete-time option pricing by the mixed fractional version of Merton model with transaction costs. By a mean-self-financing delta hedging argument in a discrete-time setting, a European call option pricing formu la is obtained. We also investigate the effect of the time-step $delta t$ and the Hurst parameter $H$ on our pricing option model, which reveals that these parameters have high impact on option pricing. The properties of this model are also explained.
Transition probability densities are fundamental to option pricing. Advancing recent work in deep learning, we develop novel transition density function generators through solving backward Kolmogorov equations in parametric space for cumulative proba bility functions, using neural networks to obtain accurate approximations of transition probability densities, creating ultra-fast transition density function generators offline that can be trained for any underlying. These are single solve , so they do not require recalculation when parameters are changed (e.g. recalibration of volatility) and are portable to other option pricing setups as well as to less powerful computers, where they can be accessed as quickly as closed-form solutions. We demonstrate the range of application for one-dimensional cases, exemplified by the Black-Scholes-Merton model, two-dimensional cases, exemplified by the Heston process, and finally for a modified Heston model with time-dependent parameters that has no closed-form solution.
While abundant empirical studies support the long-range dependence (LRD) of mortality rates, the corresponding impact on mortality securities are largely unknown due to the lack of appropriate tractable models for valuation and risk management purpos es. We propose a novel class of Volterra mortality models that incorporate LRD into the actuarial valuation, retain tractability, and are consistent with the existing continuous-time affine mortality models. We derive the survival probability in closed-form solution by taking into account of the historical health records. The flexibility and tractability of the models make them useful in valuing mortality-related products such as death benefits, annuities, longevity bonds, and many others, as well as offering optimal mean-variance mortality hedging rules. Numerical studies are conducted to examine the effect of incorporating LRD into mortality rates on various insurance products and hedging efficiency.
Artificial neural networks (ANNs) have recently also been applied to solve partial differential equations (PDEs). In this work, the classical problem of pricing European and American financial options, based on the corresponding PDE formulations, is studied. Instead of using numerical techniques based on finite element or difference methods, we address the problem using ANNs in the context of unsupervised learning. As a result, the ANN learns the option values for all possible underlying stock values at future time points, based on the minimization of a suitable loss function. For the European option, we solve the linear Black-Scholes equation, whereas for the American option, we solve the linear complementarity problem formulation. Two-asset exotic option values are also computed, since ANNs enable the accurate valuation of high-dimensional options. The resulting errors of the ANN approach are assessed by comparing to the analytic option values or to numerical reference solutions (for American options, computed by finite elements).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا