ﻻ يوجد ملخص باللغة العربية
Artificial neural networks (ANNs) have recently also been applied to solve partial differential equations (PDEs). In this work, the classical problem of pricing European and American financial options, based on the corresponding PDE formulations, is studied. Instead of using numerical techniques based on finite element or difference methods, we address the problem using ANNs in the context of unsupervised learning. As a result, the ANN learns the option values for all possible underlying stock values at future time points, based on the minimization of a suitable loss function. For the European option, we solve the linear Black-Scholes equation, whereas for the American option, we solve the linear complementarity problem formulation. Two-asset exotic option values are also computed, since ANNs enable the accurate valuation of high-dimensional options. The resulting errors of the ANN approach are assessed by comparing to the analytic option values or to numerical reference solutions (for American options, computed by finite elements).
Transition probability densities are fundamental to option pricing. Advancing recent work in deep learning, we develop novel transition density function generators through solving backward Kolmogorov equations in parametric space for cumulative proba
The validity of the Efficient Market Hypothesis has been under severe scrutiny since several decades. However, the evidence against it is not conclusive. Artificial Neural Networks provide a model-free means to analize the prediction power of past re
Using data on 17 listed public banks from Russia over the period 2008 to 2016, we analyze whether international oil prices affect the bank stability in an oil-dependent country. We posit that a decrease in international oil prices has a negative long
We introduce a general model for the balance-sheet consistent valuation of interbank claims within an interconnected financial system. Our model represents an extension of clearing models of interdependent liabilities to account for the presence of u
We introduce a general decision tree framework to value an option to invest/divest in a project, focusing on the model risk inherent in the assumptions made by standard real option valuation methods. We examine how real option values depend on the dy