ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-stage Optimization based Adversarial Training

415   0   0.0 ( 0 )
 نشر من قبل Xiaosen Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the field of adversarial robustness, there is a common practice that adopts the single-step adversarial training for quickly developing adversarially robust models. However, the single-step adversarial training is most likely to cause catastrophic overfitting, as after a few training epochs it will be hard to generate strong adversarial examples to continuously boost the adversarial robustness. In this work, we aim to avoid the catastrophic overfitting by introducing multi-step adversarial examples during the single-step adversarial training. Then, to balance the large training overhead of generating multi-step adversarial examples, we propose a Multi-stage Optimization based Adversarial Training (MOAT) method that periodically trains the model on mixed benign examples, single-step adversarial examples, and multi-step adversarial examples stage by stage. In this way, the overall training overhead is reduced significantly, meanwhile, the model could avoid catastrophic overfitting. Extensive experiments on CIFAR-10 and CIFAR-100 datasets demonstrate that under similar amount of training overhead, the proposed MOAT exhibits better robustness than either single-step or multi-step adversarial training methods.

قيم البحث

اقرأ أيضاً

Sleep staging is of great importance in the diagnosis and treatment of sleep disorders. Recently, numerous data driven deep learning models have been proposed for automatic sleep staging. They mainly rely on the assumption that training and testing d ata are drawn from the same distribution which may not hold in real-world scenarios. Unsupervised domain adaption (UDA) has been recently developed to handle this domain shift problem. However, previous UDA methods applied for sleep staging has two main limitations. First, they rely on a totally shared model for the domain alignment, which may lose the domain-specific information during feature extraction. Second, they only align the source and target distributions globally without considering the class information in the target domain, which hinders the classification performance of the model. In this work, we propose a novel adversarial learning framework to tackle the domain shift problem in the unlabeled target domain. First, we develop unshared attention mechanisms to preserve the domain-specific features in the source and target domains. Second, we design a self-training strategy to align the fine-grained class distributions for the source and target domains via target domain pseudo labels. We also propose dual distinct classifiers to increase the robustness and quality of the pseudo labels. The experimental results on six cross-domain scenarios validate the efficacy of our proposed framework for sleep staging and its advantage over state-of-the-art UDA methods.
It is commonly believed that networks cannot be both accurate and robust, that gaining robustness means losing accuracy. It is also generally believed that, unless making networks larger, network architectural elements would otherwise matter little i n improving adversarial robustness. Here we present evidence to challenge these common beliefs by a careful study about adversarial training. Our key observation is that the widely-used ReLU activation function significantly weakens adversarial training due to its non-smooth nature. Hence we propose smooth adversarial training (SAT), in which we replace ReLU with its smooth approximations to strengthen adversarial training. The purpose of smooth activation functions in SAT is to allow it to find harder adversarial examples and compute better gradient updates during adversarial training. Compared to standard adversarial training, SAT improves adversarial robustness for free, i.e., no drop in accuracy and no increase in computational cost. For example, without introducing additional computations, SAT significantly enhances ResNet-50s robustness from 33.0% to 42.3%, while also improving accuracy by 0.9% on ImageNet. SAT also works well with larger networks: it helps EfficientNet-L1 to achieve 82.2% accuracy and 58.6% robustness on ImageNet, outperforming the previous state-of-the-art defense by 9.5% for accuracy and 11.6% for robustness. Models are available at https://github.com/cihangxie/SmoothAdversarialTraining.
Recent work has demonstrated that neural networks are vulnerable to adversarial examples. To escape from the predicament, many works try to harden the model in various ways, in which adversarial training is an effective way which learns robust featur e representation so as to resist adversarial attacks. Meanwhile, the self-supervised learning aims to learn robust and semantic embedding from data itself. With these views, we introduce self-supervised learning to against adversarial examples in this paper. Specifically, the self-supervised representation coupled with k-Nearest Neighbour is proposed for classification. To further strengthen the defense ability, self-supervised adversarial training is proposed, which maximizes the mutual information between the representations of original examples and the corresponding adversarial examples. Experimental results show that the self-supervised representation outperforms its supervised version in respect of robustness and self-supervised adversarial training can further improve the defense ability efficiently.
158 - Hongge Chen , Si Si , Yang Li 2020
Multi-stage training and knowledge transfer, from a large-scale pretraining task to various finetuning tasks, have revolutionized natural language processing and computer vision resulting in state-of-the-art performance improvements. In this paper, w e develop a multi-stage influence function score to track predictions from a finetuned model all the way back to the pretraining data. With this score, we can identify the pretraining examples in the pretraining task that contribute most to a prediction in the finetuning task. The proposed multi-stage influence function generalizes the original influence function for a single model in (Koh & Liang, 2017), thereby enabling influence computation through both pretrained and finetuned models. We study two different scenarios with the pretrained embeddings fixed or updated in the finetuning tasks. We test our proposed method in various experiments to show its effectiveness and potential applications.
143 - Yinpeng Dong , Ke Xu , Xiao Yang 2021
It is well known that deep learning models have a propensity for fitting the entire training set even with random labels, which requires memorization of every training sample. In this paper, we investigate the memorization effect in adversarial train ing (AT) for promoting a deeper understanding of capacity, convergence, generalization, and especially robust overfitting of adversarially trained classifiers. We first demonstrate that deep networks have sufficient capacity to memorize adversarial examples of training data with completely random labels, but not all AT algorithms can converge under the extreme circumstance. Our study of AT with random labels motivates further analyses on the convergence and generalization of AT. We find that some AT methods suffer from a gradient instability issue, and the recently suggested complexity measures cannot explain robust generalization by considering models trained on random labels. Furthermore, we identify a significant drawback of memorization in AT that it could result in robust overfitting. We then propose a new mitigation algorithm motivated by detailed memorization analyses. Extensive experiments on various datasets validate the effectiveness of the proposed method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا