ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Domain Adaptation with Self-Training for EEG-based Sleep Stage Classification

85   0   0.0 ( 0 )
 نشر من قبل Emadeldeen Eldele
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sleep staging is of great importance in the diagnosis and treatment of sleep disorders. Recently, numerous data driven deep learning models have been proposed for automatic sleep staging. They mainly rely on the assumption that training and testing data are drawn from the same distribution which may not hold in real-world scenarios. Unsupervised domain adaption (UDA) has been recently developed to handle this domain shift problem. However, previous UDA methods applied for sleep staging has two main limitations. First, they rely on a totally shared model for the domain alignment, which may lose the domain-specific information during feature extraction. Second, they only align the source and target distributions globally without considering the class information in the target domain, which hinders the classification performance of the model. In this work, we propose a novel adversarial learning framework to tackle the domain shift problem in the unlabeled target domain. First, we develop unshared attention mechanisms to preserve the domain-specific features in the source and target domains. Second, we design a self-training strategy to align the fine-grained class distributions for the source and target domains via target domain pseudo labels. We also propose dual distinct classifiers to increase the robustness and quality of the pseudo labels. The experimental results on six cross-domain scenarios validate the efficacy of our proposed framework for sleep staging and its advantage over state-of-the-art UDA methods.



قيم البحث

اقرأ أيضاً

84 - Xue Jiang , Jianhui Zhao , Bo Du 2021
EEG signals are usually simple to obtain but expensive to label. Although supervised learning has been widely used in the field of EEG signal analysis, its generalization performance is limited by the amount of annotated data. Self-supervised learnin g (SSL), as a popular learning paradigm in computer vision (CV) and natural language processing (NLP), can employ unlabeled data to make up for the data shortage of supervised learning. In this paper, we propose a self-supervised contrastive learning method of EEG signals for sleep stage classification. During the training process, we set up a pretext task for the network in order to match the right transformation pairs generated from EEG signals. In this way, the network improves the representation ability by learning the general features of EEG signals. The robustness of the network also gets improved in dealing with diverse data, that is, extracting constant features from changing data. In detail, the networks performance depends on the choice of transformations and the amount of unlabeled data used in the training process of self-supervised learning. Empirical evaluations on the Sleep-edf dataset demonstrate the competitive performance of our method on sleep staging (88.16% accuracy and 81.96% F1 score) and verify the effectiveness of SSL strategy for EEG signal analysis in limited labeled data regimes. All codes are provided publicly online.
Mainstream approaches for unsupervised domain adaptation (UDA) learn domain-invariant representations to bridge domain gap. More recently, self-training has been gaining momentum in UDA. Originated from semi-supervised learning, self-training uses un labeled data efficiently by training on pseudo-labels. However, as corroborated in this work, under distributional shift in UDA, the pseudo-labels can be unreliable in terms of their large discrepancy from the ground truth labels. Thereby, we propose Cycle Self-Training (CST), a principled self-training algorithm that enforces pseudo-labels to generalize across domains. In the forward step, CST generates target pseudo-labels with a source-trained classifier. In the reverse step, CST trains a target classifier using target pseudo-labels, and then updates the shared representations to make the target classifier perform well on the source data. We introduce the Tsallis entropy, a novel regularization to improve the quality of target pseudo-labels. On quadratic neural networks, we prove that CST recovers target ground truth, while both invariant feature learning and vanilla self-training fail. Empirical results indicate that CST significantly improves over prior state-of-the-arts in standard UDA benchmarks across visual recognition and sentiment analysis tasks.
In the field of adversarial robustness, there is a common practice that adopts the single-step adversarial training for quickly developing adversarially robust models. However, the single-step adversarial training is most likely to cause catastrophic overfitting, as after a few training epochs it will be hard to generate strong adversarial examples to continuously boost the adversarial robustness. In this work, we aim to avoid the catastrophic overfitting by introducing multi-step adversarial examples during the single-step adversarial training. Then, to balance the large training overhead of generating multi-step adversarial examples, we propose a Multi-stage Optimization based Adversarial Training (MOAT) method that periodically trains the model on mixed benign examples, single-step adversarial examples, and multi-step adversarial examples stage by stage. In this way, the overall training overhead is reduced significantly, meanwhile, the model could avoid catastrophic overfitting. Extensive experiments on CIFAR-10 and CIFAR-100 datasets demonstrate that under similar amount of training overhead, the proposed MOAT exhibits better robustness than either single-step or multi-step adversarial training methods.
Sleeping problems have become one of the major diseases all over the world. To tackle this issue, the basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep. After its recording, the spec ialists have to score the different signals according to one of the standard guidelines. This process is carried out manually, which can be highly time-consuming and very prone to annotation errors. Therefore, over the years, many approaches have been explored in an attempt to support the specialists in this task. In this paper, an approach based on convolutional neural networks is presented, where an in-depth comparison is performed in order to determine the convenience of using more than one signal simultaneously as input. Additionally, the models were also used as parts of an ensemble model to check whether any useful information can be extracted from signal processing a single signal at a time which the dual-signal model cannot identify. Tests have been performed by using a well-known dataset called expanded sleep-EDF, which is the most commonly used dataset as the benchmark for this problem. The tests were carried out with a leave-one-out cross-validation over the patients, which ensures that there is no possible contamination between training and testing. The resulting proposal is a network smaller than previously published ones, but which overcomes the results of any previous models on the same dataset. The best result shows an accuracy of 92.67% and a Cohens Kappa value over 0.84 compared to human experts.
401 - L. Xiao , J. Xu , D. Zhao 2020
We consider the problem of unsupervised domain adaptation for image classification. To learn target-domain-aware features from the unlabeled data, we create a self-supervised pretext task by augmenting the unlabeled data with a certain type of transf ormation (specifically, image rotation) and ask the learner to predict the properties of the transformation. However, the obtained feature representation may contain a large amount of irrelevant information with respect to the main task. To provide further guidance, we force the feature representation of the augmented data to be consistent with that of the original data. Intuitively, the consistency introduces additional constraints to representation learning, therefore, the learned representation is more likely to focus on the right information about the main task. Our experimental results validate the proposed method and demonstrate state-of-the-art performance on classical domain adaptation benchmarks. Code is available at https://github.com/Jiaolong/ss-da-consistency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا