ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Memorization in Adversarial Training

144   0   0.0 ( 0 )
 نشر من قبل Yinpeng Dong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that deep learning models have a propensity for fitting the entire training set even with random labels, which requires memorization of every training sample. In this paper, we investigate the memorization effect in adversarial training (AT) for promoting a deeper understanding of capacity, convergence, generalization, and especially robust overfitting of adversarially trained classifiers. We first demonstrate that deep networks have sufficient capacity to memorize adversarial examples of training data with completely random labels, but not all AT algorithms can converge under the extreme circumstance. Our study of AT with random labels motivates further analyses on the convergence and generalization of AT. We find that some AT methods suffer from a gradient instability issue, and the recently suggested complexity measures cannot explain robust generalization by considering models trained on random labels. Furthermore, we identify a significant drawback of memorization in AT that it could result in robust overfitting. We then propose a new mitigation algorithm motivated by detailed memorization analyses. Extensive experiments on various datasets validate the effectiveness of the proposed method.

قيم البحث

اقرأ أيضاً

Recent studies suggest that ``memorization is one important factor for overparameterized deep neural networks (DNNs) to achieve optimal performance. Specifically, the perfectly fitted DNNs can memorize the labels of many atypical samples, generalize their memorization to correctly classify test atypical samples and enjoy better test performance. While, DNNs which are optimized via adversarial training algorithms can also achieve perfect training performance by memorizing the labels of atypical samples, as well as the adversarially perturbed atypical samples. However, adversarially trained models always suffer from poor generalization, with both relatively low clean accuracy and robustness on the test set. In this work, we study the effect of memorization in adversarial trained DNNs and disclose two important findings: (a) Memorizing atypical samples is only effective to improve DNNs accuracy on clean atypical samples, but hardly improve their adversarial robustness and (b) Memorizing certain atypical samples will even hurt the DNNs performance on typical samples. Based on these two findings, we propose Benign Adversarial Training (BAT) which can facilitate adversarial training to avoid fitting ``harmful atypical samples and fit as more ``benign atypical samples as possible. In our experiments, we validate the effectiveness of BAT, and show it can achieve better clean accuracy vs. robustness trade-off than baseline methods, in benchmark datasets such as CIFAR100 and Tiny~ImageNet.
Adversarial training (AT) is one of the most effective strategies for promoting model robustness. However, recent benchmarks show that most of the proposed improvements on AT are less effective than simply early stopping the training procedure. This counter-intuitive fact motivates us to investigate the implementation details of tens of AT methods. Surprisingly, we find that the basic settings (e.g., weight decay, training schedule, etc.) used in these methods are highly inconsistent. In this work, we provide comprehensive evaluations on CIFAR-10, focusing on the effects of mostly overlooked training tricks and hyperparameters for adversarially trained models. Our empirical observations suggest that adversarial robustness is much more sensitive to some basic training settings than we thought. For example, a slightly different value of weight decay can reduce the model robust accuracy by more than 7%, which is probable to override the potential promotion induced by the proposed methods. We conclude a baseline training setting and re-implement previous defenses to achieve new state-of-the-art results. These facts also appeal to more concerns on the overlooked confounders when benchmarking defenses.
Recent results show that features of adversarially trained networks for classification, in addition to being robust, enable desirable properties such as invertibility. The latter property may seem counter-intuitive as it is widely accepted by the com munity that classification models should only capture the minimal information (features) required for the task. Motivated by this discrepancy, we investigate the dual relationship between Adversarial Training and Information Theory. We show that the Adversarial Training can improve linear transferability to new tasks, from which arises a new trade-off between transferability of representations and accuracy on the source task. We validate our results employing robust networks trained on CIFAR-10, CIFAR-100 and ImageNet on several datasets. Moreover, we show that Adversarial Training reduces Fisher information of representations about the input and of the weights about the task, and we provide a theoretical argument which explains the invertibility of deterministic networks without violating the principle of minimality. Finally, we leverage our theoretical insights to remarkably improve the quality of reconstructed images through inversion.
It is commonly believed that networks cannot be both accurate and robust, that gaining robustness means losing accuracy. It is also generally believed that, unless making networks larger, network architectural elements would otherwise matter little i n improving adversarial robustness. Here we present evidence to challenge these common beliefs by a careful study about adversarial training. Our key observation is that the widely-used ReLU activation function significantly weakens adversarial training due to its non-smooth nature. Hence we propose smooth adversarial training (SAT), in which we replace ReLU with its smooth approximations to strengthen adversarial training. The purpose of smooth activation functions in SAT is to allow it to find harder adversarial examples and compute better gradient updates during adversarial training. Compared to standard adversarial training, SAT improves adversarial robustness for free, i.e., no drop in accuracy and no increase in computational cost. For example, without introducing additional computations, SAT significantly enhances ResNet-50s robustness from 33.0% to 42.3%, while also improving accuracy by 0.9% on ImageNet. SAT also works well with larger networks: it helps EfficientNet-L1 to achieve 82.2% accuracy and 58.6% robustness on ImageNet, outperforming the previous state-of-the-art defense by 9.5% for accuracy and 11.6% for robustness. Models are available at https://github.com/cihangxie/SmoothAdversarialTraining.
We describe an adversarial learning approach to constrain convolutional neural network training for image registration, replacing heuristic smoothness measures of displacement fields often used in these tasks. Using minimally-invasive prostate cancer intervention as an example application, we demonstrate the feasibility of utilizing biomechanical simulations to regularize a weakly-supervised anatomical-label-driven registration network for aligning pre-procedural magnetic resonance (MR) and 3D intra-procedural transrectal ultrasound (TRUS) images. A discriminator network is optimized to distinguish the registration-predicted displacement fields from the motion data simulated by finite element analysis. During training, the registration network simultaneously aims to maximize similarity between anatomical labels that drives image alignment and to minimize an adversarial generator loss that measures divergence between the predicted- and simulated deformation. The end-to-end trained network enables efficient and fully-automated registration that only requires an MR and TRUS image pair as input, without anatomical labels or simulated data during inference. 108 pairs of labelled MR and TRUS images from 76 prostate cancer patients and 71,500 nonlinear finite-element simulations from 143 different patients were used for this study. We show that, with only gland segmentation as training labels, the proposed method can help predict physically plausible deformation without any other smoothness penalty. Based on cross-validation experiments using 834 pairs of independent validation landmarks, the proposed adversarial-regularized registration achieved a target registration error of 6.3 mm that is significantly lower than those from several other regularization methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا