ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised Adversarial Training

201   0   0.0 ( 0 )
 نشر من قبل YueFeng Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has demonstrated that neural networks are vulnerable to adversarial examples. To escape from the predicament, many works try to harden the model in various ways, in which adversarial training is an effective way which learns robust feature representation so as to resist adversarial attacks. Meanwhile, the self-supervised learning aims to learn robust and semantic embedding from data itself. With these views, we introduce self-supervised learning to against adversarial examples in this paper. Specifically, the self-supervised representation coupled with k-Nearest Neighbour is proposed for classification. To further strengthen the defense ability, self-supervised adversarial training is proposed, which maximizes the mutual information between the representations of original examples and the corresponding adversarial examples. Experimental results show that the self-supervised representation outperforms its supervised version in respect of robustness and self-supervised adversarial training can further improve the defense ability efficiently.



قيم البحث

اقرأ أيضاً

We propose self-adaptive training -- a unified training algorithm that dynamically calibrates and enhances training process by model predictions without incurring extra computational cost -- to advance both supervised and self-supervised learning of deep neural networks. We analyze the training dynamics of deep networks on training data that are corrupted by, e.g., random noise and adversarial examples. Our analysis shows that model predictions are able to magnify useful underlying information in data and this phenomenon occurs broadly even in the absence of emph{any} label information, highlighting that model predictions could substantially benefit the training process: self-adaptive training improves the generalization of deep networks under noise and enhances the self-supervised representation learning. The analysis also sheds light on understanding deep learning, e.g., a potential explanation of the recently-discovered double-descent phenomenon in empirical risk minimization and the collapsing issue of the state-of-the-art self-supervised learning algorithms. Experiments on the CIFAR, STL and ImageNet datasets verify the effectiveness of our approach in three applications: classification with label noise, selective classification and linear evaluation. To facilitate future research, the code has been made public available at https://github.com/LayneH/self-adaptive-training.
In this work, we investigate semi-supervised learning (SSL) for image classification using adversarial training. Previous results have illustrated that generative adversarial networks (GANs) can be used for multiple purposes. Triple-GAN, which aims t o jointly optimize model components by incorporating three players, generates suitable image-label pairs to compensate for the lack of labeled data in SSL with improved benchmark performance. Conversely, Bad (or complementary) GAN, optimizes generation to produce complementary data-label pairs and force a classifiers decision boundary to lie between data manifolds. Although it generally outperforms Triple-GAN, Bad GAN is highly sensitive to the amount of labeled data used for training. Unifying these two approaches, we present unified-GAN (UGAN), a novel framework that enables a classifier to simultaneously learn from both good and bad samples through adversarial training. We perform extensive experiments on various datasets and demonstrate that UGAN: 1) achieves state-of-the-art performance among other deep generative models, and 2) is robust to variations in the amount of labeled data used for training.
The common self-supervised pre-training practice requires collecting massive unlabeled data together and then trains a representation model, dubbed textbf{joint training}. However, in real-world scenarios where data are collected in a streaming fashi on, the joint training scheme is usually storage-heavy and time-consuming. A more efficient alternative is to train a model continually with streaming data, dubbed textbf{sequential training}. Nevertheless, it is unclear how well sequential self-supervised pre-training performs with streaming data. In this paper, we conduct thorough experiments to investigate self-supervised pre-training with streaming data. Specifically, we evaluate the transfer performance of sequential self-supervised pre-training with four different data sequences on three different downstream tasks and make comparisons with joint self-supervised pre-training. Surprisingly, we find sequential self-supervised learning exhibits almost the same performance as the joint training when the distribution shifts within streaming data are mild. Even for data sequences with large distribution shifts, sequential self-supervised training with simple techniques, e.g., parameter regularization or data replay, still performs comparably to joint training. Based on our findings, we recommend using sequential self-supervised training as a textbf{more efficient yet performance-competitive} representation learning practice for real-world applications.
It is commonly believed that networks cannot be both accurate and robust, that gaining robustness means losing accuracy. It is also generally believed that, unless making networks larger, network architectural elements would otherwise matter little i n improving adversarial robustness. Here we present evidence to challenge these common beliefs by a careful study about adversarial training. Our key observation is that the widely-used ReLU activation function significantly weakens adversarial training due to its non-smooth nature. Hence we propose smooth adversarial training (SAT), in which we replace ReLU with its smooth approximations to strengthen adversarial training. The purpose of smooth activation functions in SAT is to allow it to find harder adversarial examples and compute better gradient updates during adversarial training. Compared to standard adversarial training, SAT improves adversarial robustness for free, i.e., no drop in accuracy and no increase in computational cost. For example, without introducing additional computations, SAT significantly enhances ResNet-50s robustness from 33.0% to 42.3%, while also improving accuracy by 0.9% on ImageNet. SAT also works well with larger networks: it helps EfficientNet-L1 to achieve 82.2% accuracy and 58.6% robustness on ImageNet, outperforming the previous state-of-the-art defense by 9.5% for accuracy and 11.6% for robustness. Models are available at https://github.com/cihangxie/SmoothAdversarialTraining.
The goal of this work is to train robust speaker recognition models without speaker labels. Recent works on unsupervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and a cross-utterance embeddings to be dissimilar. However, since the within-utterance segments share the same acoustic characteristics, it is difficult to separate the speaker information from the channel information. To this end, we propose augmentation adversarial training strategy that trains the network to be discriminative for the speaker information, while invariant to the augmentation applied. Since the augmentation simulates the acoustic characteristics, training the network to be invariant to augmentation also encourages the network to be invariant to the channel information in general. Extensive experiments on the VoxCeleb and VOiCES datasets show significant improvements over previous works using self-supervision, and the performance of our self-supervised models far exceed that of humans.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا