ترغب بنشر مسار تعليمي؟ اضغط هنا

Mitigating severe over-parameterization in deep convolutional neural networks through forced feature abstraction and compression with an entropy-based heuristic

46   0   0.0 ( 0 )
 نشر من قبل Stephen MacDonell
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional Neural Networks (CNNs) such as ResNet-50, DenseNet-40 and ResNeXt-56 are severely over-parameterized, necessitating a consequent increase in the computational resources required for model training which scales exponentially for increments in model depth. In this paper, we propose an Entropy-Based Convolutional Layer Estimation (EBCLE) heuristic which is robust and simple, yet effective in resolving the problem of over-parameterization with regards to network depth of CNN model. The EBCLE heuristic employs a priori knowledge of the entropic data distribution of input datasets to determine an upper bound for convolutional network depth, beyond which identity transformations are prevalent offering insignificant contributions for enhancing model performance. Restricting depth redundancies by forcing feature compression and abstraction restricts over-parameterization while decreasing training time by 24.99% - 78.59% without degradation in model performance. We present empirical evidence to emphasize the relative effectiveness of broader, yet shallower models trained using the EBCLE heuristic, which maintains or outperforms baseline classification accuracies of narrower yet deeper models. The EBCLE heuristic is architecturally agnostic and EBCLE based CNN models restrict depth redundancies resulting in enhanced utilization of the available computational resources. The proposed EBCLE heuristic is a compelling technique for researchers to analytically justify their HyperParameter (HP) choices for CNNs. Empirical validation of the EBCLE heuristic in training CNN models was established on five benchmarking datasets (ImageNet32, CIFAR-10/100, STL-10, MNIST) and four network architectures (DenseNet, ResNet, ResNeXt and EfficientNet B0-B2) with appropriate statistical tests employed to infer any conclusive claims presented in this paper.



قيم البحث

اقرأ أيضاً

We introduce an approach to training a given compact network. To this end, we leverage over-parameterization, which typically improves both neural network optimization and generalization. Specifically, we propose to expand each linear layer of the co mpact network into multiple consecutive linear layers, without adding any nonlinearity. As such, the resulting expanded network, or ExpandNet, can be contracted back to the compact one algebraically at inference. In particular, we introduce two convolutional expansion strategies and demonstrate their benefits on several tasks, including image classification, object detection, and semantic segmentation. As evidenced by our experiments, our approach outperforms both training the compact network from scratch and performing knowledge distillation from a teacher. Furthermore, our linear over-parameterization empirically reduces gradient confusion during training and improves the network generalization.
Convolutional Neural Networks (CNNs) have been proven to be extremely successful at solving computer vision tasks. State-of-the-art methods favor such deep network architectures for its accuracy performance, with the cost of having massive number of parameters and high weights redundancy. Previous works have studied how to prune such CNNs weights. In this paper, we go to another extreme and analyze the performance of a network stacked with a single convolution kernel across layers, as well as other weights sharing techniques. We name it Deep Anchored Convolutional Neural Network (DACNN). Sharing the same kernel weights across layers allows to reduce the model size tremendously, more precisely, the network is compressed in memory by a factor of L, where L is the desired depth of the network, disregarding the fully connected layer for prediction. The number of parameters in DACNN barely increases as the network grows deeper, which allows us to build deep DACNNs without any concern about memory costs. We also introduce a partial shared weights network (DACNN-mix) as well as an easy-plug-in module, coined regulators, to boost the performance of our architecture. We validated our idea on 3 datasets: CIFAR-10, CIFAR-100 and SVHN. Our results show that we can save massive amounts of memory with our model, while maintaining a high accuracy performance.
Convolutional neural networks are able to perform a hierarchical learning process starting with local features. However, a limited attention is paid to enhancing such elementary level features like edges. We propose and evaluate two wavelet-based edg e feature enhancement methods to preprocess the input images to convolutional neural networks. The first method develops feature enhanced representations by decomposing the input images using wavelet transform and limited reconstructing subsequently. The second method develops such feature enhanced inputs to the network using local modulus maxima of wavelet coefficients. For each method, we have developed a new preprocessing layer by implementing each purposed method and have appended to the network architecture. Our empirical evaluations demonstrate that the proposed methods are outperforming the baselines and previously published work with significant accuracy gains.
178 - Jingfei Chang , Yang Lu , Ping Xue 2020
To apply deep CNNs to mobile terminals and portable devices, many scholars have recently worked on the compressing and accelerating deep convolutional neural networks. Based on this, we propose a novel uniform channel pruning (UCP) method to prune de ep CNN, and the modified squeeze-and-excitation blocks (MSEB) is used to measure the importance of the channels in the convolutional layers. The unimportant channels, including convolutional kernels related to them, are pruned directly, which greatly reduces the storage cost and the number of calculations. There are two types of residual blocks in ResNet. For ResNet with bottlenecks, we use the pruning method with traditional CNN to trim the 3x3 convolutional layer in the middle of the blocks. For ResNet with basic residual blocks, we propose an approach to consistently prune all residual blocks in the same stage to ensure that the compact network structure is dimensionally correct. Considering that the network loses considerable information after pruning and that the larger the pruning amplitude is, the more information that will be lost, we do not choose fine-tuning but retrain from scratch to restore the accuracy of the network after pruning. Finally, we verified our method on CIFAR-10, CIFAR-100 and ILSVRC-2012 for image classification. The results indicate that the performance of the compact network after retraining from scratch, when the pruning rate is small, is better than the original network. Even when the pruning amplitude is large, the accuracy can be maintained or decreased slightly. On the CIFAR-100, when reducing the parameters and FLOPs up to 82% and 62% respectively, the accuracy of VGG-19 even improved by 0.54% after retraining.
We introduce a stop-code tolerant (SCT) approach to training recurrent convolutional neural networks for lossy image compression. Our methods introduce a multi-pass training method to combine the training goals of high-quality reconstructions in area s around stop-code masking as well as in highly-detailed areas. These methods lead to lower true bitrates for a given recursion count, both pre- and post-entropy coding, even using unstructured LZ77 code compression. The pre-LZ77 gains are achieved by trimming stop codes. The post-LZ77 gains are due to the highly unequal distributions of 0/1 codes from the SCT architectures. With these code compressions, the SCT architecture maintains or exceeds the image quality at all compression rates compared to JPEG and to RNN auto-encoders across the Kodak dataset. In addition, the SCT coding results in lower variance in image quality across the extent of the image, a characteristic that has been shown to be important in human ratings of image quality

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا