ترغب بنشر مسار تعليمي؟ اضغط هنا

Wavelet based edge feature enhancement for convolutional neural networks

56   0   0.0 ( 0 )
 نشر من قبل Dedimuni De Silva
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional neural networks are able to perform a hierarchical learning process starting with local features. However, a limited attention is paid to enhancing such elementary level features like edges. We propose and evaluate two wavelet-based edge feature enhancement methods to preprocess the input images to convolutional neural networks. The first method develops feature enhanced representations by decomposing the input images using wavelet transform and limited reconstructing subsequently. The second method develops such feature enhanced inputs to the network using local modulus maxima of wavelet coefficients. For each method, we have developed a new preprocessing layer by implementing each purposed method and have appended to the network architecture. Our empirical evaluations demonstrate that the proposed methods are outperforming the baselines and previously published work with significant accuracy gains.

قيم البحث

اقرأ أيضاً

Dense pixelwise prediction such as semantic segmentation is an up-to-date challenge for deep convolutional neural networks (CNNs). Many state-of-the-art approaches either tackle the loss of high-resolution information due to pooling in the encoder st age, or use dilated convolutions or high-resolution lanes to maintain detailed feature maps and predictions. Motivated by the structural analogy between multi-resolution wavelet analysis and the pooling/unpooling layers of CNNs, we introduce discrete wavelet transform (DWT) into the CNN encoder-decoder architecture and propose WCNN. The high-frequency wavelet coefficients are computed at encoder, which are later used at the decoder to unpooled jointly with coarse-resolution feature maps through the inverse DWT. The DWT/iDWT is further used to develop two wavelet pyramids to capture the global context, where the multi-resolution DWT is applied to successively reduce the spatial resolution and increase the receptive field. Experiment with the Cityscape dataset, the proposed WCNNs are computationally efficient and yield improvements the accuracy for high-resolution dense pixelwise prediction.
70 - Mo Zhang , Jie Zhao , Xiang Li 2019
Extracting multi-scale information is key to semantic segmentation. However, the classic convolutional neural networks (CNNs) encounter difficulties in achieving multi-scale information extraction: expanding convolutional kernel incurs the high compu tational cost and using maximum pooling sacrifices image information. The recently developed dilated convolution solves these problems, but with the limitation that the dilation rates are fixed and therefore the receptive field cannot fit for all objects with different sizes in the image. We propose an adaptivescale convolutional neural network (ASCNet), which introduces a 3-layer convolution structure in the end-to-end training, to adaptively learn an appropriate dilation rate for each pixel in the image. Such pixel-level dilation rates produce optimal receptive fields so that the information of objects with different sizes can be extracted at the corresponding scale. We compare the segmentation results using the classic CNN, the dilated CNN and the proposed ASCNet on two types of medical images (The Herlev dataset and SCD RBC dataset). The experimental results show that ASCNet achieves the highest accuracy. Moreover, the automatically generated dilation rates are positively correlated to the sizes of the objects, confirming the effectiveness of the proposed method.
We propose a collection of three shift-based primitives for building efficient compact CNN-based networks. These three primitives (channel shift, address shift, shortcut shift) can reduce the inference time on GPU while maintains the prediction accur acy. These shift-based primitives only moves the pointer but avoids memory copy, thus very fast. For example, the channel shift operation is 12.7x faster compared to channel shuffle in ShuffleNet but achieves the same accuracy. The address shift and channel shift can be merged into the point-wise group convolution and invokes only a single kernel call, taking little time to perform spatial convolution and channel shift. Shortcut shift requires no time to realize residual connection through allocating space in advance. We blend these shift-based primitives with point-wise group convolution and built two inference-efficient CNN architectures named AddressNet and Enhanced AddressNet. Experiments on CIFAR100 and ImageNet datasets show that our models are faster and achieve comparable or better accuracy.
Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In co ntrast, convolutional neural networks (CNNs) are capable of extracting rich features from large-scale input data, but they do not support general graph inputs. To bridge the gap between GCNs and CNNs, in this paper we study the problem of how to effectively and efficiently map general graphs to 2D grids that CNNs can be directly applied to, while preserving graph topology as much as possible. We therefore propose two novel graph-to-grid mapping schemes, namely, {em graph-preserving grid layout (GPGL)} and its extension {em Hierarchical GPGL (H-GPGL)} for computational efficiency. We formulate the GPGL problem as integer programming and further propose an approximate yet efficient solver based on a penalized Kamada-Kawai method, a well-known optimization algorithm in 2D graph drawing. We propose a novel vertex separation penalty that encourages graph vertices to lay on the grid without any overlap. Along with this image representation, even extra 2D maxpooling layers contribute to the PointNet, a widely applied point-based neural network. We demonstrate the empirical success of GPGL on general graph classification with small graphs and H-GPGL on 3D point cloud segmentation with large graphs, based on 2D CNNs including VGG16, ResNet50 and multi-scale maxout (MSM) CNN.
We propose a convolutional neural network (CNN) architecture for image classification based on subband decomposition of the image using wavelets. The proposed architecture decomposes the input image spectra into multiple critically sampled subbands, extracts features using a single CNN per subband, and finally, performs classification by combining the extracted features using a fully connected layer. Processing each of the subbands by an individual CNN, thereby limiting the learning scope of each CNN to a single subband, imposes a form of structural regularization. This provides better generalization capability as seen by the presented results. The proposed architecture achieves best-in-class performance in terms of total multiply-add-accumulator operations and nearly best-in-class performance in terms of total parameters required, yet it maintains competitive classification performance. We also show the proposed architecture is more robust than the regular full-band CNN to noise caused by weight-and-bias quantization and input quantization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا