ﻻ يوجد ملخص باللغة العربية
To apply deep CNNs to mobile terminals and portable devices, many scholars have recently worked on the compressing and accelerating deep convolutional neural networks. Based on this, we propose a novel uniform channel pruning (UCP) method to prune deep CNN, and the modified squeeze-and-excitation blocks (MSEB) is used to measure the importance of the channels in the convolutional layers. The unimportant channels, including convolutional kernels related to them, are pruned directly, which greatly reduces the storage cost and the number of calculations. There are two types of residual blocks in ResNet. For ResNet with bottlenecks, we use the pruning method with traditional CNN to trim the 3x3 convolutional layer in the middle of the blocks. For ResNet with basic residual blocks, we propose an approach to consistently prune all residual blocks in the same stage to ensure that the compact network structure is dimensionally correct. Considering that the network loses considerable information after pruning and that the larger the pruning amplitude is, the more information that will be lost, we do not choose fine-tuning but retrain from scratch to restore the accuracy of the network after pruning. Finally, we verified our method on CIFAR-10, CIFAR-100 and ILSVRC-2012 for image classification. The results indicate that the performance of the compact network after retraining from scratch, when the pruning rate is small, is better than the original network. Even when the pruning amplitude is large, the accuracy can be maintained or decreased slightly. On the CIFAR-100, when reducing the parameters and FLOPs up to 82% and 62% respectively, the accuracy of VGG-19 even improved by 0.54% after retraining.
Channel pruning is a promising technique to compress the parameters of deep convolutional neural networks(DCNN) and to speed up the inference. This paper aims to address the long-standing inefficiency of channel pruning. Most channel pruning methods
The advancement of convolutional neural networks (CNNs) on various vision applications has attracted lots of attention. Yet the majority of CNNs are unable to satisfy the strict requirement for real-world deployment. To overcome this, the recent popu
In recent years, deep neural networks have achieved great success in the field of computer vision. However, it is still a big challenge to deploy these deep models on resource-constrained embedded devices such as mobile robots, smart phones and so on
In this paper, we introduce a new channel pruning method to accelerate very deep convolutional neural networks.Given a trained CNN model, we propose an iterative two-step algorithm to effectively prune each layer, by a LASSO regression based channel
Model compression aims to reduce the redundancy of deep networks to obtain compact models. Recently, channel pruning has become one of the predominant compression methods to deploy deep models on resource-constrained devices. Most channel pruning met