ترغب بنشر مسار تعليمي؟ اضغط هنا

ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks

86   0   0.0 ( 0 )
 نشر من قبل Shuxuan Guo
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an approach to training a given compact network. To this end, we leverage over-parameterization, which typically improves both neural network optimization and generalization. Specifically, we propose to expand each linear layer of the compact network into multiple consecutive linear layers, without adding any nonlinearity. As such, the resulting expanded network, or ExpandNet, can be contracted back to the compact one algebraically at inference. In particular, we introduce two convolutional expansion strategies and demonstrate their benefits on several tasks, including image classification, object detection, and semantic segmentation. As evidenced by our experiments, our approach outperforms both training the compact network from scratch and performing knowledge distillation from a teacher. Furthermore, our linear over-parameterization empirically reduces gradient confusion during training and improves the network generalization.



قيم البحث

اقرأ أيضاً

Convolutional Neural Networks (CNNs) such as ResNet-50, DenseNet-40 and ResNeXt-56 are severely over-parameterized, necessitating a consequent increase in the computational resources required for model training which scales exponentially for incremen ts in model depth. In this paper, we propose an Entropy-Based Convolutional Layer Estimation (EBCLE) heuristic which is robust and simple, yet effective in resolving the problem of over-parameterization with regards to network depth of CNN model. The EBCLE heuristic employs a priori knowledge of the entropic data distribution of input datasets to determine an upper bound for convolutional network depth, beyond which identity transformations are prevalent offering insignificant contributions for enhancing model performance. Restricting depth redundancies by forcing feature compression and abstraction restricts over-parameterization while decreasing training time by 24.99% - 78.59% without degradation in model performance. We present empirical evidence to emphasize the relative effectiveness of broader, yet shallower models trained using the EBCLE heuristic, which maintains or outperforms baseline classification accuracies of narrower yet deeper models. The EBCLE heuristic is architecturally agnostic and EBCLE based CNN models restrict depth redundancies resulting in enhanced utilization of the available computational resources. The proposed EBCLE heuristic is a compelling technique for researchers to analytically justify their HyperParameter (HP) choices for CNNs. Empirical validation of the EBCLE heuristic in training CNN models was established on five benchmarking datasets (ImageNet32, CIFAR-10/100, STL-10, MNIST) and four network architectures (DenseNet, ResNet, ResNeXt and EfficientNet B0-B2) with appropriate statistical tests employed to infer any conclusive claims presented in this paper.
88 - Zhe Xu , Ray C. C. Cheung 2019
Although convolutional neural networks (CNNs) are now widely used in various computer vision applications, its huge resource demanding on parameter storage and computation makes the deployment on mobile and embedded devices difficult. Recently, binar y convolutional neural networks are explored to help alleviate this issue by quantizing both weights and activations with only 1 single bit. However, there may exist a noticeable accuracy degradation when compared with full-precision models. In this paper, we propose an improved training approach towards compact binary CNNs with higher accuracy. Trainable scaling factors for both weights and activations are introduced to increase the value range. These scaling factors will be trained jointly with other parameters via backpropagation. Besides, a specific training algorithm is developed including tight approximation for derivative of discontinuous binarization function and $L_2$ regularization acting on weight scaling factors. With these improvements, the binary CNN achieves 92.3% accuracy on CIFAR-10 with VGG-Small network. On ImageNet, our method also obtains 46.1% top-1 accuracy with AlexNet and 54.2% with Resnet-18 surpassing previous works.
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing hig hly discriminative features to improve the classification performance, but this task is complicated by the well-known curse of dimensionality phenomena. Other approaches based on deep Convolutional Neural Networks (CNNs) have certain limitations and drawbacks, such as high computational complexity, an unfeasibly large training set with ground-truth labels, and special hardware requirements. In this work, to address the limitations of traditional ML and deep CNN based methods, a novel and systematic classification framework is proposed for the classification of PolSAR images, based on a compact and adaptive implementation of CNNs using a sliding-window classification approach. The proposed approach has three advantages. First, there is no requirement for an extensive feature extraction process. Second, it is computationally efficient due to utilized compact configurations. In particular, the proposed compact and adaptive CNN model is designed to achieve the maximum classification accuracy with minimum training and computational complexity. This is of considerable importance considering the high costs involved in labelling in PolSAR classification. Finally, the proposed approach can perform classification using smaller window sizes than deep CNNs. Experimental evaluations have been performed over the most commonly-used four benchmark PolSAR images: AIRSAR L-Band and RADARSAT-2 C-Band data of San Francisco Bay and Flevoland areas. Accordingly, the best obtained overall accuracies range between 92.33 - 99.39% for these benchmark study sites.
Convolutional networks are large linear systems divided into layers and connected by non-linear units. These units are the articulations that allow the network to adapt to the input. To understand how a network manages to solve a problem we must look at the articulated decisions in entirety. If we could capture the actions of non-linear units for a particular input, we would be able to replay the whole system back and forth as if it was always linear. It would also reveal the actions of non-linearities because the resulting linear system, a Linear Interpreter, depends on the input image. We introduce a hooking layer, called a LinearScope, which allows us to run the network and the linear interpreter in parallel. Its implementation is simple, flexible and efficient. From here we can make many curious inquiries: how do these linear systems look like? When the rows and columns of the transformation matrix are images, how do they look like? What type of basis do these linear transformations rely on? The answers depend on the problems presented, through which we take a tour to some popular architectures used for classification, super-resolution (SR) and image-to-image translation (I2I). For classification we observe that popular networks use a pixel-wise vote per class strategy and heavily rely on bias parameters. For SR and I2I we find that CNNs use wavelet-type basis similar to the human visual system. For I2I we reveal copy-move and template-creation strategies to generate outputs.
Image registration and in particular deformable registration methods are pillars of medical imaging. Inspired by the recent advances in deep learning, we propose in this paper, a novel convolutional neural network architecture that couples linear and deformable registration within a unified architecture endowed with near real-time performance. Our framework is modular with respect to the global transformation component, as well as with respect to the similarity function while it guarantees smooth displacement fields. We evaluate the performance of our network on the challenging problem of MRI lung registration, and demonstrate superior performance with respect to state of the art elastic registration methods. The proposed deformation (between inspiration & expiration) was considered within a clinically relevant task of interstitial lung disease (ILD) classification and showed promising results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا