ﻻ يوجد ملخص باللغة العربية
We study the following learning problem with dependent data: Observing a trajectory of length $n$ from a stationary Markov chain with $k$ states, the goal is to predict the next state. For $3 leq k leq O(sqrt{n})$, using techniques from universal compression, the optimal prediction risk in Kullback-Leibler divergence is shown to be $Theta(frac{k^2}{n}log frac{n}{k^2})$, in contrast to the optimal rate of $Theta(frac{log log n}{n})$ for $k=2$ previously shown in Falahatgar et al., 2016. These rates, slower than the parametric rate of $O(frac{k^2}{n})$, can be attributed to the memory in the data, as the spectral gap of the Markov chain can be arbitrarily small. To quantify the memory effect, we study irreducible reversible chains with a prescribed spectral gap. In addition to characterizing the optimal prediction risk for two states, we show that, as long as the spectral gap is not excessively small, the prediction risk in the Markov model is $O(frac{k^2}{n})$, which coincides with that of an iid model with the same number of parameters.
Markov chain models are used in various fields, such behavioral sciences or econometrics. Although the goodness of fit of the model is usually assessed by large sample approximation, it is desirable to use conditional tests if the sample size is not
We establish Bernstein inequalities for functions of general (general-state-space, not necessarily reversible) Markov chains. These inequalities achieve sharp variance proxies and recover the classical Bernsteins inequality under independence. The ke
We extend Hoeffdings lemma to general-state-space and not necessarily reversible Markov chains. Let ${X_i}_{i ge 1}$ be a stationary Markov chain with invariant measure $pi$ and absolute spectral gap $1-lambda$, where $lambda$ is defined as the opera
We derive a Markov basis consisting of moves of degree at most three for two-state toric homogeneous Markov chain model of arbitrary length without parameters for initial states. Our basis consists of moves of degree three and degree one, which alter
Calculating a Monte Carlo standard error (MCSE) is an important step in the statistical analysis of the simulation output obtained from a Markov chain Monte Carlo experiment. An MCSE is usually based on an estimate of the variance of the asymptotic n