ترغب بنشر مسار تعليمي؟ اضغط هنا

Batch means and spectral variance estimators in Markov chain Monte Carlo

141   0   0.0 ( 0 )
 نشر من قبل James M. Flegal
 تاريخ النشر 2010
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Calculating a Monte Carlo standard error (MCSE) is an important step in the statistical analysis of the simulation output obtained from a Markov chain Monte Carlo experiment. An MCSE is usually based on an estimate of the variance of the asymptotic normal distribution. We consider spectral and batch means methods for estimating this variance. In particular, we establish conditions which guarantee that these estimators are strongly consistent as the simulation effort increases. In addition, for the batch means and overlapping batch means methods we establish conditions ensuring consistency in the mean-square sense which in turn allows us to calculate the optimal batch size up to a constant of proportionality. Finally, we examine the empirical finite-sample properties of spectral variance and batch means estimators and provide recommendations for practitioners.



قيم البحث

اقرأ أيضاً

This paper proposes a family of weighted batch means variance estimators, which are computationally efficient and can be conveniently applied in practice. The focus is on Markov chain Monte Carlo simulations and estimation of the asymptotic covarianc e matrix in the Markov chain central limit theorem, where conditions ensuring strong consistency are provided. Finite sample performance is evaluated through auto-regressive, Bayesian spatial-temporal, and Bayesian logistic regression examples, where the new estimators show significant computational gains with a minor sacrifice in variance compared with existing methods.
Markov chain models are used in various fields, such behavioral sciences or econometrics. Although the goodness of fit of the model is usually assessed by large sample approximation, it is desirable to use conditional tests if the sample size is not large. We study Markov bases for performing conditional tests of the toric homogeneous Markov chain model, which is the envelope exponential family for the usual homogeneous Markov chain model. We give a complete description of a Markov basis for the following cases: i) two-state, arbitrary length, ii) arbitrary finite state space and length of three. The general case remains to be a conjecture. We also present a numerical example of conditional tests based on our Markov basis.
Markov chain Monte Carlo (MCMC) algorithms are used to estimate features of interest of a distribution. The Monte Carlo error in estimation has an asymptotic normal distribution whose multivariate nature has so far been ignored in the MCMC community. We present a class of multivariate spectral variance estimators for the asymptotic covariance matrix in the Markov chain central limit theorem and provide conditions for strong consistency. We examine the finite sample properties of the multivariate spectral variance estimators and its eigenvalues in the context of a vector autoregressive process of order 1.
358 - Ning Dai , Galin L. Jones 2017
Markov chain Monte Carlo (MCMC) is a simulation method commonly used for estimating expectations with respect to a given distribution. We consider estimating the covariance matrix of the asymptotic multivariate normal distribution of a vector of samp le means. Geyer (1992) developed a Monte Carlo error estimation method for estimating a univariate mean. We propose a novel multivariate version of Geyers method that provides an asymptotically valid estimator for the covariance matrix and results in stable Monte Carlo estimates. The finite sample properties of the proposed method are investigated via simulation experiments.
We consider batch size selection for a general class of multivariate batch means variance estimators, which are computationally viable for high-dimensional Markov chain Monte Carlo simulations. We derive the asymptotic mean squared error for this cla ss of estimators. Further, we propose a parametric technique for estimating optimal batch sizes and discuss practical issues regarding the estimating process. Vector auto-regressive, Bayesian logistic regression, and Bayesian dynamic space-time examples illustrate the quality of the estimation procedure where the proposed optimal batch sizes outperform current batch size selection methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا