ترغب بنشر مسار تعليمي؟ اضغط هنا

Hoeffdings lemma for Markov Chains and its applications to statistical learning

119   0   0.0 ( 0 )
 نشر من قبل Bai Jiang
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend Hoeffdings lemma to general-state-space and not necessarily reversible Markov chains. Let ${X_i}_{i ge 1}$ be a stationary Markov chain with invariant measure $pi$ and absolute spectral gap $1-lambda$, where $lambda$ is defined as the operator norm of the transition kernel acting on mean zero and square-integrable functions with respect to $pi$. Then, for any bounded functions $f_i: x mapsto [a_i,b_i]$, the sum of $f_i(X_i)$ is sub-Gaussian with variance proxy $frac{1+lambda}{1-lambda} cdot sum_i frac{(b_i-a_i)^2}{4}$. This result differs from the classical Hoeffdings lemma by a multiplicative coefficient of $(1+lambda)/(1-lambda)$, and simplifies to the latter when $lambda = 0$. The counterpart of Hoeffdings inequality for Markov chains immediately follows. Our results assume none of countable state space, reversibility and time-homogeneity of Markov chains and cover time-dependent functions with various ranges. We illustrate the utility of these results by applying them to six problems in statistics and machine learning.



قيم البحث

اقرأ أيضاً

We establish Bernstein inequalities for functions of general (general-state-space, not necessarily reversible) Markov chains. These inequalities achieve sharp variance proxies and recover the classical Bernsteins inequality under independence. The ke y analysis lies in upper bounding the operator norm of a perturbed Markov transition kernel by the limiting operator norm of a sequence of finite-rank and perturbed Markov transition kernels. For each finite-rank and perturbed Markov kernel, we bound its norm by the sum of two convex functions. One coincides with what delivers the classical Bernsteins inequality, and the other reflects the influence of the Markov dependence. A convex analysis on conjugates of these two functions then derives our Bernstein inequalities.
Rejoinder to ``Equi-energy sampler with applications in statistical inference and statistical mechanics by Kou, Zhou and Wong [math.ST/0507080]
Following the seminal approach by Talagrand, the concept of Rademacher complexity for independent sequences of random variables is extended to Markov chains. The proposed notion of block Rademacher complexity (of a class of functions) follows from re newal theory and allows to control the expected values of suprema (over the class of functions) of empirical processes based on Harris Markov chains as well as the excess probability. For classes of Vapnik-Chervonenkis type, bounds on the block Rademacher complexity are established. These bounds depend essentially on the sample size and the probability tails of the regeneration times. The proposed approach is employed to obtain convergence rates for the kernel density estimator of the stationary measure and to derive concentration inequalities for the Metropolis-Hasting algorithm.
Markov chain models are used in various fields, such behavioral sciences or econometrics. Although the goodness of fit of the model is usually assessed by large sample approximation, it is desirable to use conditional tests if the sample size is not large. We study Markov bases for performing conditional tests of the toric homogeneous Markov chain model, which is the envelope exponential family for the usual homogeneous Markov chain model. We give a complete description of a Markov basis for the following cases: i) two-state, arbitrary length, ii) arbitrary finite state space and length of three. The general case remains to be a conjecture. We also present a numerical example of conditional tests based on our Markov basis.
We study the following learning problem with dependent data: Observing a trajectory of length $n$ from a stationary Markov chain with $k$ states, the goal is to predict the next state. For $3 leq k leq O(sqrt{n})$, using techniques from universal com pression, the optimal prediction risk in Kullback-Leibler divergence is shown to be $Theta(frac{k^2}{n}log frac{n}{k^2})$, in contrast to the optimal rate of $Theta(frac{log log n}{n})$ for $k=2$ previously shown in Falahatgar et al., 2016. These rates, slower than the parametric rate of $O(frac{k^2}{n})$, can be attributed to the memory in the data, as the spectral gap of the Markov chain can be arbitrarily small. To quantify the memory effect, we study irreducible reversible chains with a prescribed spectral gap. In addition to characterizing the optimal prediction risk for two states, we show that, as long as the spectral gap is not excessively small, the prediction risk in the Markov model is $O(frac{k^2}{n})$, which coincides with that of an iid model with the same number of parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا