ﻻ يوجد ملخص باللغة العربية
We derive a Markov basis consisting of moves of degree at most three for two-state toric homogeneous Markov chain model of arbitrary length without parameters for initial states. Our basis consists of moves of degree three and degree one, which alter the initial frequencies, in addition to moves of degree two and degree one for toric homogeneous Markov chain model with parameters for initial states.
Markov chain models are used in various fields, such behavioral sciences or econometrics. Although the goodness of fit of the model is usually assessed by large sample approximation, it is desirable to use conditional tests if the sample size is not
We consider the three-state toric homogeneous Markov chain model (THMC) without loops and initial parameters. At time $T$, the size of the design matrix is $6 times 3cdot 2^{T-1}$ and the convex hull of its columns is the model polytope. We study the
We prove the conjecture by Diaconis and Eriksson (2006) that the Markov degree of the Birkhoff model is three. In fact, we prove the conjecture in a generalization of the Birkhoff model, where each voter is asked to rank a fixed number, say r, of can
We study the following learning problem with dependent data: Observing a trajectory of length $n$ from a stationary Markov chain with $k$ states, the goal is to predict the next state. For $3 leq k leq O(sqrt{n})$, using techniques from universal com
Calculating a Monte Carlo standard error (MCSE) is an important step in the statistical analysis of the simulation output obtained from a Markov chain Monte Carlo experiment. An MCSE is usually based on an estimate of the variance of the asymptotic n