ﻻ يوجد ملخص باللغة العربية
Ferroelectric field-effect transistors (Fe-FETs) with ferroelectric hafnium oxide (FE HfO2) as gate insulator are being extensively explored as a promising device candidate for three-dimensional (3D) NAND memory application. FE HfO2 exhibits long retention over 10 years, high endurance over 1012 cycles, high speed with sub-ns polarization switching, and high remnant polarization of 10-30 {mu}C/cm2. However, the performance of Fe-FETs is known to be much worse than FE HfO2 capacitors, which is not completely understood. In this work, we developed a comprehensive Fe-FET model based on a charge balance framework. The role of charge balance and the impact of leakage-assist-switching mechanism on the memory characteristics of Fe-FETs with M/FE/DE/S (Metal/Ferroelectric/Dielectric/Semiconductor) gate stack is studied. It is found that the FE/DE interface and DE layer instead of FE layer is critical to determine the memory characteristics of Fe-FETs, and experimental Fe-FETs can be well explained by this model, where the discrepancy between FE capacitors and Fe-FETs are successfully understood.
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzy
At the LaAlO$_3$-SrTiO$_3$ interface, electronic phase transitions can be triggered by modulation of the charge carrier density, making this system an excellent prospect for the realization of versatile electronic devices. Here, we report repeatable
The application of imaging techniques based on ensembles of nitrogen-vacancy (NV) sensors in diamond to characterise electrical devices has been proposed, but the compatibility of NV sensing with operational gated devices remains largely unexplored.
Transient currents in atomically thin MoTe$_2$ field-effect transistor are measured during cycles of pulses through the gate electrode. The transients are analyzed in light of a newly proposed model for charge trapping dynamics that renders a time-de
In recent years, resistive RAM often referred to as memristor is actively pursued as a replacement for nonvolatile-flash memory due to its superior characteristics such as high density, scalability, low power operation, high endurance, and fast opera