ﻻ يوجد ملخص باللغة العربية
Transient currents in atomically thin MoTe$_2$ field-effect transistor are measured during cycles of pulses through the gate electrode. The transients are analyzed in light of a newly proposed model for charge trapping dynamics that renders a time-dependent change in threshold voltage the dominant effect on the channel hysteretic behavior over emission currents from the charge traps. The proposed model is expected to be instrumental in understanding the fundamental physics that governs the performance of atomically thin FETs and is applicable to the entire class of atomically thin-based devices. Hence, the model is vital to the intelligent design of fast and highly efficient opto-electronic devices.
Due to the excellent electrical transport properties and optoelectronic performance, thin indium selenide (InSe) has recently attracted attention in the field of 2D semiconducting materials. However, the mechanism behind the photocurrent generation i
Ferroelectric field-effect transistors (Fe-FETs) with ferroelectric hafnium oxide (FE HfO2) as gate insulator are being extensively explored as a promising device candidate for three-dimensional (3D) NAND memory application. FE HfO2 exhibits long ret
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in si
Transition metal dichalcogenide monolayers are promising candidates for exploring new electronic and optical phenomena and for realizing atomically thin optoelectronic devices. They host tightly bound electron-hole pairs (excitons) that can be effici
The realization of mixtures of excitons and charge carriers in van-der-Waals materials presents a new frontier for the study of the many-body physics of strongly interacting Bose-Fermi mixtures. In order to derive an effective low-energy model for su