ﻻ يوجد ملخص باللغة العربية
In recent years, resistive RAM often referred to as memristor is actively pursued as a replacement for nonvolatile-flash memory due to its superior characteristics such as high density, scalability, low power operation, high endurance, and fast operating speed. However, one of the challenges that need to be overcome is the loss of retention for both ON- and OFF-states; the retention loss. While various models are proposed to explain the retention loss in memristors consisting of a switching layer, in this paper, we propose that the nucleation of clusters made of electrical charges, charge-clusters, in the switching layer acts as a potential root cause for the retention loss. The nucleation results from localized electric-field produced intermittently during cyclic switching operations. We use the phase-field method to illustrate how the nucleation of charge-clusters gives rise to the retention loss. Our results suggest that the degree at which the retention loss arises is linked to the number of cyclic switching operations since the probability at which nucleation centers form increases with the number of cycle switching operations, which is consistent with a range of experimental findings previously reported.
Ferroelectric field-effect transistors (Fe-FETs) with ferroelectric hafnium oxide (FE HfO2) as gate insulator are being extensively explored as a promising device candidate for three-dimensional (3D) NAND memory application. FE HfO2 exhibits long ret
We address the issue of inter-particle dipolar interactions in the context of magnetic hyperthermia. More precisely, the main question dealt with here is concerned with the conditions under which the specific absorption rate is enhanced or reduced by
We present a theory and experiment demonstrating optical readout of charge and spin in a single InAs/GaAs self-assembled quantum dot. By applying a magnetic field we create the filling factor 2 quantum Hall singlet phase of the charged exciton. Incre
At the LaAlO$_3$-SrTiO$_3$ interface, electronic phase transitions can be triggered by modulation of the charge carrier density, making this system an excellent prospect for the realization of versatile electronic devices. Here, we report repeatable
We study the influence of epitaxial strain on the electronic properties of InAs/GaSb composite quantum wells (CQWs), host structures for quantum spin Hall insulators, by transport measurements and eight-band $mathbf{kcdot p}$ calculations. Using diff