ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Skyrmion Field-Effect Transistors

265   0   0.0 ( 0 )
 نشر من قبل Kyung-Jin Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzyaloshinskii-Moriya interaction. A key working principle of the proposed skyrmion field-effect transistor is a large transverse motion of skyrmion, caused by an effective equilibrium damping-like spin-orbit torque due to spatially inhomogeneous Dzyaloshinskii-Moriya interaction. This large transverse motion can be categorized as the skyrmion Hall effect, but has been unrecognized previously. The propose device is capable of multi-bit operation and Boolean functions, and thus is expected to serve as a low-power logic device based on the magnetic solitons.



قيم البحث

اقرأ أيضاً

The application of imaging techniques based on ensembles of nitrogen-vacancy (NV) sensors in diamond to characterise electrical devices has been proposed, but the compatibility of NV sensing with operational gated devices remains largely unexplored. Here we fabricate graphene field-effect transistors (GFETs) directly on the diamond surface and characterise them via NV microscopy. The current density within the gated graphene is reconstructed from NV magnetometry under both mostly p- and n-type doping, but the exact doping level is found to be affected by the measurements. Additionally, we observe a surprisingly large modulation of the electric field at the diamond surface under an applied gate potential, seen in NV photoluminescence and NV electrometry measurements, suggesting a complex electrostatic response of the oxide-graphene-diamond structure. Possible solutions to mitigate these effects are discussed.
At the LaAlO$_3$-SrTiO$_3$ interface, electronic phase transitions can be triggered by modulation of the charge carrier density, making this system an excellent prospect for the realization of versatile electronic devices. Here, we report repeatable transistor operation in locally gated LaAlO$_3$-SrTiO$_3$ field-effect devices of which the LaAlO$_3$ dielectric is only four unit cells thin, the critical thickness for conduction at this interface. This extremely thin dielectric allows a very efficient charge modulation of ${sim}3.2times10^{13}$ cm$^{-2}$ within a gate-voltage window of $pm1$ V, as extracted from capacitance-voltage measurements. These also reveal a large stray capacitance between gate and source, presenting a complication for nanoscale device operation. Despite the small LaAlO$_3$ thickness, we observe a negligible gate leakage current, which we ascribe to the extension of the conducting states into the SrTiO$_3$ substrate.
155 - Mengwei Si , Peide D. Ye 2021
Ferroelectric field-effect transistors (Fe-FETs) with ferroelectric hafnium oxide (FE HfO2) as gate insulator are being extensively explored as a promising device candidate for three-dimensional (3D) NAND memory application. FE HfO2 exhibits long ret ention over 10 years, high endurance over 1012 cycles, high speed with sub-ns polarization switching, and high remnant polarization of 10-30 {mu}C/cm2. However, the performance of Fe-FETs is known to be much worse than FE HfO2 capacitors, which is not completely understood. In this work, we developed a comprehensive Fe-FET model based on a charge balance framework. The role of charge balance and the impact of leakage-assist-switching mechanism on the memory characteristics of Fe-FETs with M/FE/DE/S (Metal/Ferroelectric/Dielectric/Semiconductor) gate stack is studied. It is found that the FE/DE interface and DE layer instead of FE layer is critical to determine the memory characteristics of Fe-FETs, and experimental Fe-FETs can be well explained by this model, where the discrepancy between FE capacitors and Fe-FETs are successfully understood.
The spin field effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field effect tra nsistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch, spin relaxation, and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed, but these differ from the field effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for the incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field effect transistor, in which these obstacles are overcome by employing two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin-orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins -- spin injection, manipulation, and detection -- in a purely electrical manner. Such a device is compatible with large-scale integration and hold promise for future spintronic devices for information processing.
The advent of black phosphorus field-effect transistors (FETs) has brought new possibilities in the study of two-dimensional (2D) electron systems. In a black phosphorus FET, the gate induces highly anisotropic 2D electron and hole gases. Although th e 2D hole gas in black phosphorus has reached high carrier mobilities that led to the observation of the integer quantum Hall effect, the improvement in the sample quality of the 2D electron gas (2DEG) has however been only moderate; quantum Hall effect remained elusive. Here, we obtain high quality black phosphorus 2DEG by defining the 2DEG region with a prepatterned graphite local gate. The graphite local gate screens the impurity potential in the 2DEG. More importantly, it electrostatically defines the edge of the 2DEG, which facilitates the formation of well-defined edge channels in the quantum Hall regime. The improvements enable us to observe precisely quantized Hall plateaus in electron-doped black phosphorus FET. Magneto-transport measurements under high magnetic fields further revealed a large effective mass and an enhanced Lande g-factor, which points to strong electron-electron interaction in black phosphorus 2DEG. Such strong interaction may lead to exotic many-body quantum states in the fractional quantum Hall regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا