ﻻ يوجد ملخص باللغة العربية
With the increasing diversity in the requirement of wireless services with guaranteed quality of service(QoS), radio access network(RAN) slicing becomes an important aspect in implementation of next generation wireless systems(5G). RAN slicing involves division of network resources into many logical segments where each segment has specific QoS and can serve users of mobile virtual network operator(MVNO) with these requirements. This allows the Network Operator(NO) to provide service to multiple MVNOs each with different service requirements. Efficient allocation of the available resources to slices becomes vital in determining number of users and therefore, number of MVNOs that a NO can support. In this work, we study the problem of Modulation and Coding Scheme(MCS) aware RAN slicing(MaRS) in the context of a wireless system having MVNOs which have users with minimum data rate requirement. Channel Quality Indicator(CQI) report sent from each user in the network determines the MCS selected, which in turn determines the achievable data rate. But the channel conditions might not remain the same for the entire duration of user being served. For this reason, we consider the channel conditions to be dynamic where the choice of MCS level varies at each time instant. We model the MaRS problem as a Non-Linear Programming problem and show that it is NP-Hard. Next, we propose a solution based on greedy algorithm paradigm. We then develop an upper performance bound for this problem and finally evaluate the performance of proposed solution by comparing against the upper bound under various channel and network configurations.
In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside
5G is regarded as a revolutionary mobile network, which is expected to satisfy a vast number of novel services, ranging from remote health care to smart cities. However, heterogeneous Quality of Service (QoS) requirements of different services and li
In this paper, the problem of dynamic spectrum sensing and aggregation is investigated in a wireless network containing N correlated channels, where these channels are occupied or vacant following an unknown joint 2-state Markov model. At each time s
We offer a lattice-theoretic account of dynamic slicing for {pi}-calculus, building on prior work in the sequential setting. For any run of a concurrent program, we exhibit a Galois connection relating forward slices of the start configuration to bac
Surveillance performance is studied for a wireless eavesdropping system, where a full-duplex legitimate monitor eavesdrops a suspicious link efficiently with the artificial noise (AN) assistance. Different from the existing work in the literature, th