ﻻ يوجد ملخص باللغة العربية
We offer a lattice-theoretic account of dynamic slicing for {pi}-calculus, building on prior work in the sequential setting. For any run of a concurrent program, we exhibit a Galois connection relating forward slices of the start configuration to backward slices of the end configuration. We prove that, up to lattice isomorphism, the same Galois connection arises for any causally equivalent execution, allowing an efficient concurrent implementation of slicing via a standard interleaving semantics. Our approach has been formalised in the dependently-typed language Agda.
We show that noninterference and transparency, the key soundness theorems for dynamic IFC libraries, can be obtained for free, as direct consequences of the more general parametricity theorem of type abstraction. This allows us to give very short sou
This volume contains the proceedings of ICE 2013, the 6th Interaction and Concurrency Experience workshop, which was held in Florence, Italy on the 6th of June 2013 as a satellite event of DisCoTec 2013. The ICE procedure for paper selection allows P
We define a domain-specific language (DSL) to inductively assemble flow networks from small networks or modules to produce arbitrarily large ones, with interchangeable functionally-equivalent parts. Our small networks or modules are small only as the
Recently, Wadler presented a continuation-passing translation from a session-typed functional language, GV, to a process calculus based on classical linear logic, CP. However, this translation is one-way: CP is more expressive than GV. We propose an
CSP-Agda is a library, which formalises the process algebra CSP in the interactive theorem prover Agda using coinductive data types. In CSP-Agda, CSP processes are in monadic form, which sup- ports a modular development of processes. In this paper, w