ﻻ يوجد ملخص باللغة العربية
In this paper, the problem of dynamic spectrum sensing and aggregation is investigated in a wireless network containing N correlated channels, where these channels are occupied or vacant following an unknown joint 2-state Markov model. At each time slot, a single cognitive user with certain bandwidth requirement either stays idle or selects a segment comprising C (C < N) contiguous channels to sense. Then, the vacant channels in the selected segment will be aggregated for satisfying the user requirement. The user receives a binary feedback signal indicating whether the transmission is successful or not (i.e., ACK signal) after each transmission, and makes next decision based on the sensing channel states. Here, we aim to find a policy that can maximize the number of successful transmissions without interrupting the primary users (PUs). The problem can be considered as a partially observable Markov decision process (POMDP) due to without full observation of system environment. We implement a Deep Q-Network (DQN) to address the challenge of unknown system dynamics and computational expenses. The performance of DQN, Q-Learning, and the Improvident Policy with known system dynamics is evaluated through simulations. The simulation results show that DQN can achieve near-optimal performance among different system scenarios only based on partial observations and ACK signals.
Last year, IEEE 802.11 Extremely High Throughput Study Group (EHT Study Group) was established to initiate discussions on new IEEE 802.11 features. Coordinated control methods of the access points (APs) in the wireless local area networks (WLANs) are
Designing clustered unmanned aerial vehicle (UAV) communication networks based on cognitive radio (CR) and reinforcement learning can significantly improve the intelligence level of clustered UAV communication networks and the robustness of the syste
We consider distributed caching of content across several small base stations (SBSs) in a wireless network, where the content is encoded using a maximum distance separable code. Specifically, we apply soft time-to-live (STTL) cache management policie
Next generation wireless networks are expected to be extremely complex due to their massive heterogeneity in terms of the types of network architectures they incorporate, the types and numbers of smart IoT devices they serve, and the types of emergin
Spectrum sharing among users is a fundamental problem in the management of any wireless network. In this paper, we discuss the problem of distributed spectrum collaboration without central management under general unknown channels. Since the cost of