ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource, and distribute computation workloads for the slices. To obtain an optimal RAN slicing policy for accommodating the spatial-temporal dynamics of vehicle traffic density, we first formulate a constrained RAN slicing problem with the objective to minimize long-term system cost. This problem cannot be directly solved by traditional reinforcement learning (RL) algorithms due to complicated coupled constraints among decisions. Therefore, we decouple the problem into a resource allocation subproblem and a workload distribution subproblem, and propose a two-layer constrained RL algorithm, named Resource Allocation and Workload diStribution (RAWS) to solve them. Specifically, an outer layer first makes the resource allocation decision via an RL algorithm, and then an inner layer makes the workload distribution decision via an optimization subroutine. Extensive trace-driven simulations show that the RAWS effectively reduces the system cost while satisfying QoS requirements with a high probability, as compared with benchmarks.
Future wireless networks are envisioned to serve massive Internet of things (mIoT) via some radio access technologies, where the random access channel (RACH) procedure should be exploited for IoT devices to access the networks. However, the theoretic
With the increasing diversity in the requirement of wireless services with guaranteed quality of service(QoS), radio access network(RAN) slicing becomes an important aspect in implementation of next generation wireless systems(5G). RAN slicing involv
The combination of cloud computing capabilities at the network edge and artificial intelligence promise to turn future mobile networks into service- and radio-aware entities, able to address the requirements of upcoming latency-sensitive applications
5G is regarded as a revolutionary mobile network, which is expected to satisfy a vast number of novel services, ranging from remote health care to smart cities. However, heterogeneous Quality of Service (QoS) requirements of different services and li
Caching has been regarded as a promising technique to alleviate energy consumption of sensors in Internet of Things (IoT) networks by responding to users requests with the data packets stored in the edge caching node (ECN). For real-time applications