ترغب بنشر مسار تعليمي؟ اضغط هنا

Covert Surveillance via Proactive Eavesdropping Under Channel Uncertainty

99   0   0.0 ( 0 )
 نشر من قبل Zihao Cheng
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Surveillance performance is studied for a wireless eavesdropping system, where a full-duplex legitimate monitor eavesdrops a suspicious link efficiently with the artificial noise (AN) assistance. Different from the existing work in the literature, the suspicious receiver in this paper is assumed to be capable of detecting the presence of AN. Once such receiver detects the AN, the suspicious user will stop transmission, which is harmful for the surveillance performance. Hence, to improve the surveillance performance, AN should be transmitted covertly with a low detection probability by the suspicious receiver. Under these assumptions, an optimization problem is formulated to maximize the eavesdropping non-outage probability under a covert constraint. Based on the detection ability at the suspicious receiver, a novel scheme is proposed to solve the optimization problem by iterative search. Moreover, we investigate the impact of both the suspicious link uncertainty and the jamming link uncertainty on the covert surveillance performance. Simulations are performed to verify the analyses. We show that the suspicious link uncertainty benefits the surveillance performance, while the jamming link uncertainty can degrade the surveillance performance.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the downlink transmission of a multiuser multiple-input single-output (MISO) channel under a symbol-level precoding (SLP) scheme, having imperfect channel knowledge at the transmitter. In defining the SLP problem, a gene ral category of constructive interference regions (CIR) called distance preserving CIR (DPCIR) is adopted. In particular, we are interested in the robust SLP design minimizing the total transmit power while satisfying the users quality-of-service (QoS) requirements. We consider two common models for the channel uncertainty region, namely, norm-bounded spherical and stochastic. For the spherical uncertainty model, a worst-case robust precoder is proposed, while for the stochastic uncertainties, we define a convex optimization problem with probabilistic constraints. We simulate the performance of the proposed robust approaches, and compare them with the existing methods. Through the simulation results, we also show that there is an essential trade-off between the two robust approaches.
Simultaneous wireless information and power transfer (SWIPT) has recently gathered much research interest from both academia and industry as a key enabler of energy harvesting Internet-of-things (IoT) networks. Due to a number of growing use cases of such networks, it is important to study their performance limits from the perspective of physical layer security (PLS). With this intent, this work aims to provide a novel analysis of the ergodic secrecy capacity of a SWIPT system is provided for Rician and Nakagami-m faded communication links. For a realistic evaluation of the system, the imperfections of channel estimations for different receiver designs of the SWIPT-based IoT systems have been taken into account. Subsequently, the closedform expressions of the ergodic secrecy capacities for the considered scenario are provided and, then, validated through extensive simulations. The results indicate that an error ceiling appears due to imperfect channel estimation at high values of signal-to-noise ratio (SNR). More importantly, the secrecy capacity under different channel conditions stops increasing beyond a certain limit, despite an increase of the main link SNR. The in-depth analysis of secrecy-energy trade-off has also been performed and a comparison has been provided for imperfect and perfect channel estimation cases. As part of the continuous evolution of IoT networks, the results provided in this work can help in identifying the secrecy limits of IoT networks in the presence of multiple eavesdroppers.
Recently, multi-user multiple input multiple output (MU-MIMO) systems with low-resolution digital-to-analog converters (DACs) has received considerable attention, owing to the capability of dramatically reducing the hardware cost. Besides, it has bee n shown that the use of low-resolution DACs enable great reduction in power consumption while maintain the performance loss within acceptable margin, under the assumption of perfect knowledge of channel state information (CSI). In this paper, we investigate the precoding problem for the coarsely quantized MU-MIMO system without such an assumption. The channel uncertainties are modeled to be a random matrix with finite second-order statistics. By leveraging a favorable relation between the multi-bit DACs outputs and the single-bit ones, we first reformulate the original complex precoding problem into a nonconvex binary optimization problem. Then, using the S-procedure lemma, the nonconvex problem is recast into a tractable formulation with convex constraints and finally solved by the semidefinite relaxation (SDR) method. Compared with existing representative methods, the proposed precoder is robust to various channel uncertainties and is able to support a MUMIMO system with higher-order modulations, e.g., 16QAM.
Covert communications enable a transmitter to send information reliably in the presence of an adversary, who looks to detect whether the transmission took place or not. We consider covert communications over quasi-static block fading channels, where users suffer from channel uncertainty. We investigate the adversary Willies optimal detection performance in two extreme cases, i.e., the case of perfect channel state information (CSI) and the case of channel distribution information (CDI) only. It is shown that in the large detection error regime, Willies detection performances of these two cases are essentially indistinguishable, which implies that the quality of CSI does not help Willie in improving his detection performance. This result enables us to study the covert transmission design without the need to factor in the exact amount of channel uncertainty at Willie. We then obtain the optimal and suboptimal closed-form solution to the covert transmission design. Our result reveals fundamental difference in the design between the case of quasi-static fading channel and the previously studied case of non-fading AWGN channel.
Modulation classification, an intermediate process between signal detection and demodulation in a physical layer, is now attracting more interest to the cognitive radio field, wherein the performance is powered by artificial intelligence algorithms. However, most existing conventional approaches pose the obstacle of effectively learning weakly discriminative modulation patterns. This paper proposes a robust modulation classification method by taking advantage of deep learning to capture the meaningful information of modulation signal at multi-scale feature representations. To this end, a novel architecture of convolutional neural network, namely Chain-Net, is developed with various asymmetric kernels organized in two processing flows and associated via depth-wise concatenation and element-wise addition for optimizing feature utilization. The network is evaluated on a big dataset of 14 challenging modulation formats, including analog and high-order digital techniques. The simulation results demonstrate that Chain-Net robustly classifies the modulation of radio signals suffering from a synthetic channel deterioration and further performs better than other deep networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا