ﻻ يوجد ملخص باللغة العربية
One major impediment in rapidly deploying object detection models for industrial applications is the lack of large annotated datasets. We currently have presented the Sacked Carton Dataset(SCD) that contains carton images from three scenarios, such as comprehensive pharmaceutical logistics company(CPLC), e-commerce logistics company(ECLC), fruit market(FM). However, due to domain shift, the model trained with one of the three scenarios in SCD has poor generalization ability when applied to the rest scenarios. To solve this problem, a novel image synthesis method is proposed to replace the foreground texture of the source datasets with the texture of the target datasets. Our method can keep the context relationship of foreground objects and backgrounds unchanged and greatly augment the target datasets. We firstly propose a surface segmentation algorithm to achieve texture decoupling of each instance. Secondly, a contour reconstruction algorithm is proposed to keep the occlusion and truncation relationship of the instance unchanged. Finally, the Gaussian fusion algorithm is used to replace the foreground texture from the source datasets with the texture from the target datasets. The novel image synthesis method can largely boost AP by at least 4.3%~6.5% on RetinaNet and 3.4%~6.8% on Faster R-CNN for the target domain. Code is available at https://github.com/hustgetlijun/RCAN.
Carton detection is an important technique in the automatic logistics system and can be applied to many applications such as the stacking and unstacking of cartons, the unloading of cartons in the containers. However, there is no public large-scale c
A non-parametric interpretable texture synthesis method, called the NITES method, is proposed in this work. Although automatic synthesis of visually pleasant texture can be achieved by deep neural networks nowadays, the associated generation models a
Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is cruci
Image-based 3D shape retrieval (IBSR) aims to find the corresponding 3D shape of a given 2D image from a large 3D shape database. The common routine is to map 2D images and 3D shapes into an embedding space and define (or learn) a shape similarity me
Comprehensive semantic segmentation is one of the key components for robust scene understanding and a requirement to enable autonomous driving. Driven by large scale datasets, convolutional neural networks show impressive results on this task. Howeve