ﻻ يوجد ملخص باللغة العربية
A non-parametric interpretable texture synthesis method, called the NITES method, is proposed in this work. Although automatic synthesis of visually pleasant texture can be achieved by deep neural networks nowadays, the associated generation models are mathematically intractable and their training demands higher computational cost. NITES offers a new texture synthesis solution to address these shortcomings. NITES is mathematically transparent and efficient in training and inference. The input is a single exemplary texture image. The NITES method crops out patches from the input and analyzes the statistical properties of these texture patches to obtain their joint spatial-spectral representations. Then, the probabilistic distributions of samples in the joint spatial-spectral spaces are characterized. Finally, numerous texture images that are visually similar to the exemplary texture image can be generated automatically. Experimental results are provided to show the superior quality of generated texture images and efficiency of the proposed NITES method in terms of both training and inference time.
In this work, we present a non-parametric texture synthesis algorithm capable of producing plausible images without copying large tiles of the exemplar. We focus on a simple synthesis algorithm, where we explore two patch match heuristics; the well k
Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networ
One major impediment in rapidly deploying object detection models for industrial applications is the lack of large annotated datasets. We currently have presented the Sacked Carton Dataset(SCD) that contains carton images from three scenarios, such a
In this paper, we investigate deep image synthesis guided by sketch, color, and texture. Previous image synthesis methods can be controlled by sketch and color strokes but we are the first to examine texture control. We allow a user to place a textur
Existing compression methods typically focus on the removal of signal-level redundancies, while the potential and versatility of decomposing visual data into compact conceptual components still lack further study. To this end, we propose a novel conc