ترغب بنشر مسار تعليمي؟ اضغط هنا

Validation of Simulation-Based Testing: Bypassing Domain Shift with Label-to-Image Synthesis

100   0   0.0 ( 0 )
 نشر من قبل Julia Rosenzweig
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many machine learning applications can benefit from simulated data for systematic validation - in particular if real-life data is difficult to obtain or annotate. However, since simulations are prone to domain shift w.r.t. real-life data, it is crucial to verify the transferability of the obtained results. We propose a novel framework consisting of a generative label-to-image synthesis model together with different transferability measures to inspect to what extent we can transfer testing results of semantic segmentation models from synthetic data to equivalent real-life data. With slight modifications, our approach is extendable to, e.g., general multi-class classification tasks. Grounded on the transferability analysis, our approach additionally allows for extensive testing by incorporating controlled simulations. We validate our approach empirically on a semantic segmentation task on driving scenes. Transferability is tested using correlation analysis of IoU and a learned discriminator. Although the latter can distinguish between real-life and synthetic tests, in the former we observe surprisingly strong correlations of 0.7 for both cars and pedestrians.



قيم البحث

اقرأ أيضاً

With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of the se hashing methods are designed to handle simple binary similarity. The complex multilevel semantic structure of images associated with multiple labels have not yet been well explored. Here we propose a deep semantic ranking based method for learning hash functions that preserve multilevel semantic similarity between multi-label images. In our approach, deep convolutional neural network is incorporated into hash functions to jointly learn feature representations and mappings from them to hash codes, which avoids the limitation of semantic representation power of hand-crafted features. Meanwhile, a ranking list that encodes the multilevel similarity information is employed to guide the learning of such deep hash functions. An effective scheme based on surrogate loss is used to solve the intractable optimization problem of nonsmooth and multivariate ranking measures involved in the learning procedure. Experimental results show the superiority of our proposed approach over several state-of-the-art hashing methods in term of ranking evaluation metrics when tested on multi-label image datasets.
In this work, we propose an adversarial unsupervised domain adaptation (UDA) approach with the inherent conditional and label shifts, in which we aim to align the distributions w.r.t. both $p(x|y)$ and $p(y)$. Since the label is inaccessible in the t arget domain, the conventional adversarial UDA assumes $p(y)$ is invariant across domains, and relies on aligning $p(x)$ as an alternative to the $p(x|y)$ alignment. To address this, we provide a thorough theoretical and empirical analysis of the conventional adversarial UDA methods under both conditional and label shifts, and propose a novel and practical alternative optimization scheme for adversarial UDA. Specifically, we infer the marginal $p(y)$ and align $p(x|y)$ iteratively in the training, and precisely align the posterior $p(y|x)$ in testing. Our experimental results demonstrate its effectiveness on both classification and segmentation UDA, and partial UDA.
One major impediment in rapidly deploying object detection models for industrial applications is the lack of large annotated datasets. We currently have presented the Sacked Carton Dataset(SCD) that contains carton images from three scenarios, such a s comprehensive pharmaceutical logistics company(CPLC), e-commerce logistics company(ECLC), fruit market(FM). However, due to domain shift, the model trained with one of the three scenarios in SCD has poor generalization ability when applied to the rest scenarios. To solve this problem, a novel image synthesis method is proposed to replace the foreground texture of the source datasets with the texture of the target datasets. Our method can keep the context relationship of foreground objects and backgrounds unchanged and greatly augment the target datasets. We firstly propose a surface segmentation algorithm to achieve texture decoupling of each instance. Secondly, a contour reconstruction algorithm is proposed to keep the occlusion and truncation relationship of the instance unchanged. Finally, the Gaussian fusion algorithm is used to replace the foreground texture from the source datasets with the texture from the target datasets. The novel image synthesis method can largely boost AP by at least 4.3%~6.5% on RetinaNet and 3.4%~6.8% on Faster R-CNN for the target domain. Code is available at https://github.com/hustgetlijun/RCAN.
Purpose: Segmentation of surgical instruments in endoscopic videos is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical experts. Methods: We introduce a teacher-student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the erroneous learning problem of the current consistency-based unsupervised domain adaptation framework. Results: Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance on all datasets to highlight the strengths and failure modes of our approach. Conclusion: We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one step closer to effective segmentation of surgical tools in the annotation scarce setting.
Synthesizing images of the eye fundus is a challenging task that has been previously approached by formulating complex models of the anatomy of the eye. New images can then be generated by sampling a suitable parameter space. In this work, we propose a method that learns to synthesize eye fundus images directly from data. For that, we pair true eye fundus images with their respective vessel trees, by means of a vessel segmentation technique. These pairs are then used to learn a mapping from a binary vessel tree to a new retinal image. For this purpose, we use a recent image-to-image translation technique, based on the idea of adversarial learning. Experimental results show that the original and the generated images are visually different in terms of their global appearance, in spite of sharing the same vessel tree. Additionally, a quantitative quality analysis of the synthetic retinal images confirms that the produced images retain a high proportion of the true image set quality.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا