ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard Example Generation by Texture Synthesis for Cross-domain Shape Similarity Learning

46   0   0.0 ( 0 )
 نشر من قبل Huan Fu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image-based 3D shape retrieval (IBSR) aims to find the corresponding 3D shape of a given 2D image from a large 3D shape database. The common routine is to map 2D images and 3D shapes into an embedding space and define (or learn) a shape similarity measure. While metric learning with some adaptation techniques seems to be a natural solution to shape similarity learning, the performance is often unsatisfactory for fine-grained shape retrieval. In the paper, we identify the source of the poor performance and propose a practical solution to this problem. We find that the shape difference between a negative pair is entangled with the texture gap, making metric learning ineffective in pushing away negative pairs. To tackle this issue, we develop a geometry-focused multi-view metric learning framework empowered by texture synthesis. The synthesis of textures for 3D shape models creates hard triplets, which suppress the adverse effects of rich texture in 2D images, thereby push the network to focus more on discovering geometric characteristics. Our approach shows state-of-the-art performance on a recently released large-scale 3D-FUTURE[1] repository, as well as three widely studied benchmarks, including Pix3D[2], Stanford Cars[3], and Comp Cars[4]. Codes will be made publicly available at: https://github.com/3D-FRONT-FUTURE/IBSR-texture



قيم البحث

اقرأ أيضاً

Dynamic texture (DT) exhibits statistical stationarity in the spatial domain and stochastic repetitiveness in the temporal dimension, indicating that different frames of DT possess a high similarity correlation that is critical prior knowledge. Howev er, existing methods cannot effectively learn a promising synthesis model for high-dimensional DT from a small number of training data. In this paper, we propose a novel DT synthesis method, which makes full use of similarity prior knowledge to address this issue. Our method bases on the proposed kernel similarity embedding, which not only can mitigate the high-dimensionality and small sample issues, but also has the advantage of modeling nonlinear feature relationship. Specifically, we first raise two hypotheses that are essential for DT model to generate new frames using similarity correlation. Then, we integrate kernel learning and extreme learning machine into a unified synthesis model to learn kernel similarity embedding for representing DT. Extensive experiments on DT videos collected from the internet and two benchmark datasets, i.e., Gatech Graphcut Textures and Dyntex, demonstrate that the learned kernel similarity embedding can effectively exhibit the discriminative representation for DT. Accordingly, our method is capable of preserving the long-term temporal continuity of the synthesized DT sequences with excellent sustainability and generalization. Meanwhile, it effectively generates realistic DT videos with fast speed and low computation, compared with the state-of-the-art methods. The code and more synthesis videos are available at our project page https://shiming-chen.github.io/Similarity-page/Similarit.html.
Contrastive learning shows great potential in unpaired image-to-image translation, but sometimes the translated results are in poor quality and the contents are not preserved consistently. In this paper, we uncover that the negative examples play a c ritical role in the performance of contrastive learning for image translation. The negative examples in previous methods are randomly sampled from the patches of different positions in the source image, which are not effective to push the positive examples close to the query examples. To address this issue, we present instance-wise hard Negative Example Generation for Contrastive learning in Unpaired image-to-image Translation (NEGCUT). Specifically, we train a generator to produce negative examples online. The generator is novel from two perspectives: 1) it is instance-wise which means that the generated examples are based on the input image, and 2) it can generate hard negative examples since it is trained with an adversarial loss. With the generator, the performance of unpaired image-to-image translation is significantly improved. Experiments on three benchmark datasets demonstrate that the proposed NEGCUT framework achieves state-of-the-art performance compared to previous methods.
In this work, we propose a novel technique to generate shapes from point cloud data. A point cloud can be viewed as samples from a distribution of 3D points whose density is concentrated near the surface of the shape. Point cloud generation thus amou nts to moving randomly sampled points to high-density areas. We generate point clouds by performing stochastic gradient ascent on an unnormalized probability density, thereby moving sampled points toward the high-likelihood regions. Our model directly predicts the gradient of the log density field and can be trained with a simple objective adapted from score-based generative models. We show that our method can reach state-of-the-art performance for point cloud auto-encoding and generation, while also allowing for extraction of a high-quality implicit surface. Code is available at https://github.com/RuojinCai/ShapeGF.
199 - Rui Wang , Zuxuan Wu , Zejia Weng 2021
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distance s across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
Since annotating pixel-level labels for semantic segmentation is laborious, leveraging synthetic data is an attractive solution. However, due to the domain gap between synthetic domain and real domain, it is challenging for a model trained with synth etic data to generalize to real data. In this paper, considering the fundamental difference between the two domains as the texture, we propose a method to adapt to the texture of the target domain. First, we diversity the texture of synthetic images using a style transfer algorithm. The various textures of generated images prevent a segmentation model from overfitting to one specific (synthetic) texture. Then, we fine-tune the model with self-training to get direct supervision of the target texture. Our results achieve state-of-the-art performance and we analyze the properties of the model trained on the stylized dataset with extensive experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا