ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent energy exchange between carriers and phonons in Peierls-distorted bismuth unveiled by broadband XUV pulses

62   0   0.0 ( 0 )
 نشر من قبل Romain G\\'eneaux
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Peierls-distorted materials, photoexcitation leads to a strongly coupled transient response between structural and electronic degrees of freedom, always measured independently of each other. Here we use transient reflectivity in the extreme ultraviolet to quantify both responses in photoexcited bismuth in a single measurement. With the help of first-principles calculations based on density-functional theory (DFT) and time-dependent DFT, the real-space atomic motion and the temperature of both electrons and holes as a function of time are captured simultaneously, retrieving an anticorrelation between the $A_{1g}$ phonon dynamics and carrier temperature. The results reveal a coherent, bi-directional energy exchange between carriers and phonons, which is a dynamical counterpart of the static Peierls-Jones distortion, providing first-time validation of previous theoretical predictions.

قيم البحث

اقرأ أيضاً

We report time- and angle-resolved photoemission spectroscopy measurements on the Sb(111) surface. We observe band- and momentum-dependent binding-energy oscillations in the bulk and surface bands driven by $A_{1g}$ and $E_{g}$ coherent phonons. Whil e the bulk band shows simultaneous $A_{1g}$ and $E_{g}$ oscillations, the surface bands show either $A_{1g}$ or $E_{g}$ oscillations. The observed behavior is reproduced by frozen-phonon calculations based on density-functional theory. This evidences the connection between electron-phonon coupling and coherent binding energy dynamics.
43 - Hiroyuki Emoto 2016
In this paper, we report on the investigation of (1) the transport properties of multi-carriers in semi-metal Bi and (2) the spin conversion physics in this semimetal system in a ferrimagnetic insulator, yttrium-iron-garnet. Hall measurements reveal that electrons and holes co-exist in the Bi, with electrons being the dominant carrier. The results of a spin conversion experiment corroborate the results of the Hall measurement; in addition, the inverse spin Hall effect governs the spin conversion in the semimetal/insulator system. This study provides further insights into spin conversion physics in semimetal systems.
We present a detailed study of the vibrational properties of Single Wall Carbon Nanotubes (SWNTs). The phonon dispersions of SWNTs are strongly shaped by the effects of electron-phonon coupling. We analyze the separate contributions of curvature and confinement. Confinement plays a major role in modifying SWNT phonons and is often more relevant than curvature. Due to their one-dimensional character, metallic tubes are expected to undergo Peierls distortions (PD) at T=0K. At finite temperature, PD are no longer present, but phonons with atomic displacements similar to those of the PD are affected by strong Kohn anomalies (KA). We investigate by Density Functional Theory (DFT) KA and PD in metallic SWNTs with diameters up to 3 nm, in the electronic temperature range from 4K to 3000 K. We then derive a set of simple formulas accounting for all the DFT results. Finally, we prove that the static approach, commonly used for the evaluation of phonon frequencies in solids, fails because of the SWNTs reduced dimensionality. The correct description of KA in metallic SWNTs can be obtained only by using a dynamical approach, beyond the adiabatic Born-Oppenheimer approximation, by taking into account non-adiabatic contributions. Dynamic effects induce significant changes in the occurrence and shape of Kohn anomalies. We show that the SWNT Raman G peak can only be interpreted considering the combined dynamic, curvature and confinement effects. We assign the G+ and G- peaks of metallic SWNTs to TO (circumferential) and LO (axial) modes, respectively, the opposite of semiconducting SWNTs.
We have developed a model describing the non-proportional response in scintillators based on non-thermalised carrier and phonon transport. We show that the thermalization of e-h distributions produced in scintillators immediately after photon absorpt ion may take longer than the period over which the non-proportional signal forms. The carrier and LO-phonon distributions during this period remain non-degenerate at quasi-equilibrium temperatures far exceeding room temperature. We solve balance equations describing the energy exchange in a hot bipolar plasma of electrons/holes and phonons. Taking into account dynamic screening we calculate the ambipolar diffusion coefficient at all temperatures. The non-proportional light yields calculated for NaI are shown to be consistent with experimental data. We discuss the implications of a non-equilibrium model, comparing its predictions with a model based on the transport of thermalised carriers. Finally, evidence for non-equilibrium effects is suggested by the shape of non-proportionality curve and wide dispersion in data observed in K-dip spectroscopy near the threshold. A comparison of the predicted curves shows good agreement for deformation potential value in the range 7-8 eV.
53 - Jianbo Hu , Hang Zhang , Yi Sun 2018
The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on tem perature and doping in n- and p-type GaAs by using ultrafast optical phonon spectroscopy. A suppression of coherent oscillations has been observed in p-type GaAs at lower temperature, strikingly different from n-type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of surface field due to a slow diffusion of photoexcited carriers in p-type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا