ﻻ يوجد ملخص باللغة العربية
We report time- and angle-resolved photoemission spectroscopy measurements on the Sb(111) surface. We observe band- and momentum-dependent binding-energy oscillations in the bulk and surface bands driven by $A_{1g}$ and $E_{g}$ coherent phonons. While the bulk band shows simultaneous $A_{1g}$ and $E_{g}$ oscillations, the surface bands show either $A_{1g}$ or $E_{g}$ oscillations. The observed behavior is reproduced by frozen-phonon calculations based on density-functional theory. This evidences the connection between electron-phonon coupling and coherent binding energy dynamics.
We present a comprehensive ab initio study of structural, electronic, lattice dynamical and electron-phonon coupling properties of the Bi(111) surface within density functional perturbation theory. Relativistic corrections due to spin-orbit coupling
We present a combined experimental and theoretical study of the surface vibrational modes of the topological insulator (TI) Bi$_2$Se$_3$ with particular emphasis on the low-energy region below 10 meV that has been difficult to resolve experimentally.
Structural modifications in InP(111) due to 1.5 MeV implantation of Sb have been characterized using first order and second order Raman spectroscopy. With both Longitudinal Optical (LO) and Transverse Optical (TO) modes allowed for InP(111), we have
We present a combined density-functional-perturbation-theory and inelastic neutron scattering study of the lattice dynamical properties of YNi2B2C. In general, very good agreement was found between theory and experiment for both phonon energies and l
Symmetry breaking across phase transitions often causes changes in selection rules and emergence of optical modes which can be detected via spectroscopic techniques or generated coherently in pump-probe experiments. In second-order or weakly first-or